大数据时代的应急管理变革_数据分析师
当前,大数据浪潮汹涌澎湃。大数据所具有的大量(volume)、高速(ve locity)、多样(variety)和真实(ve racity)的特性正在推动原有社会生产生活模式的重大变革。在应急管理领域,大数据技术的发展至少带来两个方面的革命性变化。
一方面,大数据的出现改变了突发事件的发生、发展和演化的时空模式,加深了突发事件的不确定性。数据关联和信息联通扩大了传统突发事件的影响范围,数据的高速传输也可能使某些负面信息通过互联网瞬间引爆网络群体性事件。海量个性化数据的存储和传输过程中的安全问题则孕育了超乎想象的全新风险。
另一方面,大数据又为可测量、可追踪和精细化的应急管理提供基本信息和管理工具。大数据技术可将这些纷繁复杂的多源异构数据处理成具有决策价值的有效信息。传统管理模式下,应急决策大多是依据个人经验的直觉决策(heuristic decision),而大数据技术的应用使得高度不确定性和高度时间压力下的分析决策(analytical decision)成为可能。
这两个方面的变化是相辅相成、具有逻辑关联的,前者是应急管理对象的变化,后者是应急管理方式的变化,正是由于大数据时代突发事件的形式和规律都在不断发生变化,因此适应大数据发展的应急管理方式变革势在必行。
综观世界各国应急管理的最新进展,大数据技术的应用大致体现在以下五个方面。
大数据技术在突发事件监测预警领域的应用。著名的大数据研究者迈尔·舍恩伯格和库克耶在其畅销著作《大数据时代:生活、工作与思维的大变革》中指出,“大数据的核心就是预测,是把数学算法运用到海量的数据上来预测事情发生的可能性”。并描述了一个运用大数据技术预测突发公共卫生事件的经典案例:谷歌公司通过保存和分析人们的搜索指令准确地预测了2009年甲型H1N1流感的爆发,比美国疾病预防与控制中心(CDC)依靠传统方法的预测提前了两周,为有效控制流行病传播提供了宝贵时间。美国政府在国家安全战略中引入大数据技术,用于对恐怖主义活动、黑客攻击、公共卫生事件、舆情危机等进行监测和预警。
基于大数据技术构建的辅助决策系统。危机情景下的决策始终是应急管理领域的一个重大挑战,危机决策的挑战来自于信息不完备、时间压力大等客观条件的约束。大数据技术使得基于所有数据而不是样本数据的决策成为可能。以美国为代表的发达国家开始探索基于大数据技术的辅助决策系统。美国国土安全部从2012年开始运行了第一个跨部门大数据应用试点项目——“海王星”(Neptune)和“地狱犬”(Cerberus),数据库以完全不同于国土安全部自2002年沿袭至今的方式进行了重新组织,计划将不同来源的未经分类的信息汇聚成一个“数据湖”,对海量数据的综合分析成为国家安全决策的重要参考。
大数据技术在城市管理和社会管理领域的运用。大数据将兴起于2008年的“智慧地球”和“智慧城市”建设推进到全新的阶段。城市管理的一个重要方面就是确保城市公共安全。“智慧城市”运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,城市系统的突发事件,特别是城市生命线、基础设施、重点地区的突发事件都在“智慧城市”系统的监测之中。而以“网格化管理”为特征的新型社会管理模式也通过监控录像、社区服务信息等途径不断积累大数据,这些数据对于掌握城市和社会的脆弱环节,控制和消除风险因素起到重要作用。
大数据技术对危机中个体行为模式的研究和应用。大数据时代中,由于人的各种行为都可以数据化,因此通过大数据技术分析危机中个体行为模式构筑了应急管理领域中的一个政策基础。大数据技术通过分析单个网民的传播模式研究了舆情热点事件的演化过程,大数据技术通过分析大量个体的言论和行为从而预测群体性事件发生的可能性,大数据技术通过分析人们接受各类灾害(如暴雨、飓风、地震等)的预警信息之后的行为反应以设计更加有效的风险沟通策略,大数据技术追踪个体在灾害中的逃生和自救行为,从而提升应急疏散和第一响应的能力。
大数据技术在应急资源配置中的管理。应急管理是在危机情景下组织应急人员、调配应急物资以缓解和消除危机负面影响的过程。借助于大数据技术,人员流动和物资流动都可以转化为各种形式的大数据,如通过通讯基站可以快速确定通过手机等通讯设备发出应急信号的人员位置,而急救车、消防车等应急设备的运动轨迹可以通过GPS进行定位和追踪。通过对这些数据集的分析可以针对灾害发生的时空规律对应急资源进行优化配置,对危机情景下应急物资的调运进行最优的线路设计。大数据技术使得应急资源的布局和运用更加精准、高效。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21