美军把大数据分析引入作战(1)_数据分析师
信息技术带给现实世界的最大变化之一就是万物皆可数据化,这使人们更加坚信“世界的本质是数据”“数据将会改变世界”,大数据标志着信息社会终于名副其实。大数据时代的到来会深刻地改变整个世界,也会改变人类的思维方式,同样也会改变战争。
机器人、自治系统、小型化、大数据和三维技术将是未来海上作战重点发展领域。美国海军既注重与传统的武器制造商如洛克希德·马丁公司紧密合作,同时也在寻求与谷歌等商业公司的合作,以提高未来海上作战的能力。近年来,美国海军与洛克希德·马丁公司、高校以及谷歌和IBM等IT企业合作,从而引领海军技术进入大数据时代。大数据来源众多,以惊人的速度、数量和种类发展,这就使得使用现有技术分析非常困难,特别是借助iPhone等现代触屏科技产品将产生新的大量数据,并可智能操控、无人操控。美国军方一些高级研发人员表示,他们尤其对海军舰艇的控制台感到不满,对于平均年龄18岁,在成长过程中一直伴随着iPhone和iPad等现代触屏科技产品的水兵而言,这些控制台的操作并不直观。他们建议,海军习惯于对那些从小就学会使用iPhone的新兵说“忘了iPhone吧,我要教你如何使用操纵杆”,试图用新兵所熟悉的现代科技(包括大数据、云计算等)来取代操纵杆式的陈规旧习。长期以来,美国海军舰载传感器、飞机和其他平台产生大量的数据,但是这些数据没有被有效地利用,需要大量的人力。美国海军通过整合这些类型的信息支持战术作战的能力非常有限。美国海军研究局(ONR)称,目前,机载、舰载和其他部署的系统产生了大量数据,想要在作战环境中利用全部数据已经变得很困难。
战场数据集成是大数据技术军事领域运用的关键,随着云计算、通信、媒体和移动计算的快速发展和深入应用,战场的数据量还将快速增长。大数据时代最大的亮点就是人和社会的计算,越来越多的问题都将通过计算得到解决。大数据是指人类有前所未有的能力来使用海量的数据,在其中发现新知识、创新新价值,从而为社会带来“大知识”“大科技”“大变革”和“大智能”等发展机遇。大数据时代通常具有四大特征:一是数据量大,数据量级已从TB发展至PB乃至ZB,可称海量、巨量乃至超量。二是多样化,数据类型繁多,多为网页、图片、视频、图像与位置等半结构化和非结构化数据信息。数据品类将极其混杂,关联度一般极低,而且在相当长的时期内非结构化数据会占据大数据的主体。三是处理快速化,数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。四是价值高和密度低,大数据往往意味着极高的价值,但同其体量一样,正是因为极小价值的海量汇合,才形成了大数据的高价值。现在随着各项创新技术的汇集,大数据展现出了大量的新机会,特别是军事领域的运用。这些趋势决定着最重要的战场需要,可视化战场要求军队数据处理高速化、精准化以保持战斗力,武器装备信息整合要求在数据合并后能成功地集成。
美国奥巴马政府在获得连任后不久就宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家意志。美国政府和军方都明确表示,国家拥有数据的规模、活性及解释和运用将成为综合国力的重要组成部分,对数据的占有和控制甚至将成为海权、空权、陆权之外的另一种核心资产。因此,未来战争与其说是石油战争不如说是大数据战争。美国海军通过采用突破性的分析工具建立海军大数据生态系统来解决此问题。美国海军希望寻求利用大数据增强作战能力的方法,通过整合IT系统数据和作战系统传感器获得实时结果,利用云计算和大数据技术发展作战工具。例如,允许指挥官在船上查看仪表盘,能够实时跟踪任务中发生的一切,掌握预期的变化情况,并推测可能的结果。
目前,美国海军主要集中在两个领域即反潜作战和一体化防空反导系统,来提升大数据对作战的效果和能力,寻求增强威胁评估预警、作战识别、一体化作战和任务计划以及执行能力。美国海军主要在以下四个方面开展研究:建立海军数据科学通用的基础体系架构,用于不同机构间数据表征和共享;引入数据源并建立索引,通过海军的云环境利用大量的数据集合;进行海军作战分析,开发先进的分析工具支持作战,特别是反潜作战和防空反导作战;利用云计算的安全性和完整性,增强海军防御能力。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21