分布式存储与数据库选型问答整理分享_数据分析师
日,有关存储系统选型的问题在微信群里讨论的火热,CSDN在这里稍微将各位专家的问答总结了一下,分享给大家。
文章内容来源大数据基础设施微信群,参与讨论的专家有中国科学院软件研究所工程师,C3核心成员李明宇,国防科学技术大学教授,CCF大数据专家委员会委员李东升,云人科技联合创始人兼CEO吴朱华,Memblaze技术顾问刘爱贵等等。
Q:有一个场景:每天有近百GB数据增加,数据内容有WORD文档和图像等多种类型。用什么存储或文件系统比较合适?
A: HDFS、HBase、Hive不太适合存文档、图片大小的文件,HDFS适用于存大文件,后两者适用于数据库场景,每天近百GB的文档、图像,那只有用SWIFT了。
Q:SWIFT与Ceph、GlusterFS、MongoDB/GridFS之间的比较呢?
A:SWIFT是专为这种场景设计的,性能可以调节。
Q:如果图像比较大的情况,一张图接近GB时,哪个合适?
A:我仍然推荐用SWIFT,SWIFT官方认为对几个G的支持都没有问题,但是我认为处理几个G的大文件性能上可能会比HDFS差,因为没有条带化。但是考虑到文档、图片类型存储,你会遇到很多几兆、几十兆的,这些文件的存储,HDFS就不如SWIFT了。从适用范围的角度来看,咱们这个场景里还是首选SWIFT。
Q:GlusterFS它的优点在哪里,在文件数量太大时Gluster会出现性能问题正常么?
A: GlusterFS,它的优点在于如果你需要使用POSIX接口,那GlusterFS是一个很好的选择,但是Gluster在文件数量、目录数量太大的情况下会出现性能衰减,这是文件系统本身的特点决定的,不论是哪种POSIX兼容的文件系统,都存在类似的问题。
Q:SWIFT、Ceph、GlusterFS、MongoDB那个更好?
A:关于SWIFT、Ceph、GlusterFS、MongoDB之间的比较,没有孰优孰劣,只有是不是适合。MongoDB是NoSQL数据库,和HBase是同一类,但是和其他几个分布式存储显然不是同一类的,不适合用于此类场景。
Q:Ceph,SWIFT分别适合什么样的情况?
A:如果你只需要用块存储,那当然是Ceph,如果只需要用对象存储,那当然是SWIFT。各自有各自擅长的地方,不过现在因为Ceph也支持对象存储,SWIFT和Ceph又是OpenStack社区非常频繁提到的两种存储形式,所以,有很多人会把SWIFT和Ceph在一起比较。
如果只要用对象存储,就选择SWIFT;如果只要用块存储,那就Ceph;即要用对象存储又要用块存储的场合,是用SWIFT还是Ceph呢?我们一般是这样推荐的:
1.如果节点数量很大,推荐用Ceph单独做块,用SWIFT做对象存储,因为在节点数量较大时,Ceph的维护成本比SWIFT要高得多,大多数场景实际应用的时候会发现,大部分数据都可以放到对象存储上(这一点如果有疑问,欢迎随时讨论);
2.如果节点数量少,那就用Ceph统一搞定,因为一般认为生产环境中最小的分布式存储应当有五个节点,所以,如果节点数量少于十个或者刚到十来个,那构建两个分布式存储显然是不理想的(考虑到空间划分问题);
3.如果团队里有牛人能轻松解决Ceph大规模部署问题,那就果断用Ceph;
4.如果希望对象存储能够和OpenStack其他项目无缝结合,如果希望实现多租户,果断用SWIFT来实现对象存储。
Q:对象存储的本质是什么?
A:对象存储本身有两个概念,一种是九几年提出的,针对NAS性能问题提出的一种新的存储架构,其实Gluster也是那种对象存储。另一种是06年亚马逊推出S3以后逐渐被人接受的对象存储,特点是RESTful接口和扁平的数据组织形式。我们说的CEPH和SWIFT提供对象存储,指的是后者,但是CEPH的底层RADOS,又是前一类对象存储。
Q:如果现在有一堆文件要存,如何选择是用对象还是用文件系统呢?
A:所谓文件系统的本质是POSIX接口,“对象”这个名词是做对象存储的人为了把自己做的东西和文件系统区分开而用的术语,把存在对象存储里的文件叫做“对象”,所以选择文件系统还是对象存储,跟你把这堆数据称作对象还是文件并没有直接关系,而是要看你是需要POSIX还是RESTful HTTP接口,是需要目录结构还是适用扁平数据管理结构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31