SPSS中异常值检验的几种方法介绍(1)_数据分析师
SPSS 中异常值检验的几种方法介绍
方法具体如下所示: 离群值 (箱图/探索) .值与框的上下边界的距离在 1.5 倍框的长度到 3 倍框的长度之间的个案。 框的长度是内距。 极端值(箱图).值距离框的上下边界超过 3 倍框的长度的个案。框的长度是内距 在回归模型诊断里面, 一般称预测值与实际值的偏差为"残差"残差有几种表示方法:标准化残差, 学生化残差等等,按照需要取一种残差,再按照某种标准取一个阀值来限定异常点,只要那个点 的残差大于阀值,就可以认为它是异常点。
SPSS14 之后新功能
SPSS Data Validation 能帮助您轻松地探察多个异常值,以便您可以进一步检验并确定是否把 这些观测包括在您的分析中。SPSS Data Validation 异常探察程序能够基于与数据集中相似观 测的偏离探察异常值,并给出偏离的原因。它使您可以通过创建新变量来标识异常值。
标签: 市场研究 研究方法 经营分析 分类: 经营分析 2009-11-24 18:59
这段时间太忙了,一直没有静下心来。积攒了几个朋友的问题,现在来回答或介绍一些, 今天先谈谈时间序列(Time-Series Forecasting)的预测问题! 预测: 是对尚未发生或目前还不明确的事物进行预先的估计和推测, 是在现时对事物将要发 生的结果进行探讨和研究,简单地说就是指从已知事件测定未知事件。 为什么要预测呢, 因为预测可以帮助了解事物发展的未来状况后, 人们可以在目前为它的到 来做好准备, 通过预测可以了解目前的决策所可能带来的后果, 并通过对后果的分析来确定 目前的决策,力争使目前的决策获得最佳的未来结果。 我们进行预测的总的原则是:认识事物的发展变化规律,利用规律的必然性,是进行科学预 测所应遵循的总的原则。 这个总原则实际上就是事物发展的 1-“惯性”原则——事物变化发展的延续性; 2-“类推”原则——事物发展的类似性; 3-“相关”原则——事物的变化发展是相互联系的;
4-“概率”原则——事物发展的推断预测结果能以较大概率出现,则结果成立、可用;
时间序列预测主要包括三种基本方法: 1-内生时间序列预测技术;2-外生时间序列预测技术;3-主观时间序列预测技术; 当然今天我们主要讨论内生时间序列预测技术——也就是只关注时间序列的下的预测问题!
从数据分析的角度来考虑,我们需要研究:
1. 序列是否在固定水平上下变动? 2. 此水平是否也在变动? 3. 是否有某种上升或下降的趋势呢? 4. 是否存在有季节性的模式? 5. 是否季节性的模式也在变更呢?
6. 是否存在周期性规律和模式?
时间序列有一明显的特性就是记忆性(memory),记忆性
系指时间数列中的任一观测值的 表现皆受到过去观测值影响。
时间序列主要考虑的因素是:
长期趋势(Long-term trend)
1. 2.
时间序列可能相当稳定或随时间呈现某种趋势。 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数 (exponential function)。 季节性变动(Seasonal variation)
1. 2. 3.
按时间变动,呈现重复性行为的序列。 季节性变动通常和日期或气候有关。 季节性变动通常和年周期有关。
周期性变动(Cyclical variation) 1. 相对于季节性变动,时间序列可能经历“周期性变动”。 2. 周期性变动通常是因为经济变动。 随机影响(Random effects)
预测技术主要包括两大类:
指数平滑方法(Exponential smoothing models):
描述时间序列数据的变化规律和行为,不去试图解释和理解这种变化的原因。例如:您 可能发现在过去的一年里,三月和九月都会出现销售的高峰,您可能希望继续保持这样,尽 管您不知道为什么。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20