这样就可以得到统一视图下的选择图了!
数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图 数据可视化的艺术——用图表吸引目光(四)——Excel 金字塔图
这次介绍一个 Excel 的小技巧,关于单元格格式中【数字】这一项的设定。 请看上图所示的金字塔图,有没有发现问题? 比如下图
按照常规的作图方式, 图中突出的两个地方的数字应该是“-9508”和“-15000”。 但是在 表示人口数量的时候使用负数显然是不合适的。因此我们可以想个办法将 Excel 中的图标 转换成 y 轴左右都是正数的形式。
调查数据的加权处理技术
很多人在进行统计分析和市场研究的时候, 都涉及到对数据进行加权的问题, 这是一个搞数 据分析和从事市场
研究的人都会碰到的问题, 需要大家正确理解并解释, 并采用合理的操作 技术和处理方法。 什么是加权呢? 简单地说,就是要“让一些人变得比另一些人更重要!” 要能够比较好的理解加权,首先你要了解抽样设计,特别是设计权数:每个样本单位所代表 的被调查总体的单位数。设计权数由抽样设计决定,用 Wd 表示。 设计权数 Wd=1/入样概率; 入样概率:在抽样设计中,如果一个样本的入样概率=1/50,那么该样本的设计权数=50。 也就是说,这个样本代表了总体中的 50 个单位。 关于自加权抽样设计:如果所用样本的设计权数是相等的,那么这样的抽样设计是自加 权的。也就是说,总体中的每个单元被抽中的可能性相等,具有等可能性、具有相等的入样概率。如果是自加权的,在总体均值、比例估计时不用考虑设计权数,对总量的估计只要扩 大样本。 满足自加权的抽样设计:等概率抽样、简单随机抽样、系统抽样、分层抽样—各层大小 成比例,每层内简单随机抽样、多阶段抽样—最后阶段等概率,其它阶段与单位大小成比例 概率抽样。 不等概率抽样往往不满足自加权, 对于不等概率抽样, 正确使用设计权数就尤为重要了!
下面我们看看如何进行加权处理! 加权:通过对总体中的各个样本设置不同的数值系数(即加权因子-权重),使样本呈现希望 的相对重要性程度; 基本加权等于:设计加权=某个变量或指标的期望比例/该变量或指标的实际比例;
什么情况下要进行加权? 情景 1:我们在抽样调查得到的样本结构与总体人口统计结构状况不相符,我们可以通过加 权来消除/还原这种结构差异,达到纠偏的目的; 例如,在城市和农村各调查 300 样本,城市与农村人口比例“城市:农村=1:2”(假设),在 分析时我们希望将城市和农场看作一个整体,这时候我们就可以赋予农村样本一个 2 倍于 城市样本的权重; 情景 2:除了人口统计结构,有时候我们在调查样本的某些变量或指标上样本的代表性可能 也会相对总体的实际状况过高/过低,此时,需要加权进行调整;
这类不匹配大多是我们“故意”而为(通过“追加”样本实现),比如在配额抽样的时候,设置配 额要求某类被访者对某产品的使用者必须达到 50%,但实际情况是总体市场中实际使用者 仅有 10%; 有时,则是“非情愿”的出现,比如设置了能反映总体的配额比例,但实际操作却出现了比例 偏高/偏低; 情景 3:在样本组配额实验设计中,进行不同子总体对比检验,也会通过加权来调整不同组 间的样本属性不相匹配的情形(通常设有相同的配额,但执行有可能会出现差异);通常,加 权对结果产生的差异很小,更多的是对结果从准确度上进行修饰; 情景 4:所测试样本出现了较多的缺失值,需要加权来纠正结果;对于面向特定客户的专项 研究,在调查前基本都协议有要完成的样本量,故这种情形较少;
数据分析咨询请扫描二维码
自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10