3 城市大数据分析的保障性措施建议
3.1 与云基地的建设协同发展
各地云基地的建设意味着海量的数据将进行集中管理。其中存储、运算服务伴随云基地的设备到位就可以支持规模性增长,也为大数据分析奠定了基础,而大数据分析也使得多地的云基地建设有最切合的用武之地,不至于成为一朵“浮云”。
3.2 成立城市大数据中心
政府应用数据存在敏感性、保密性等特点,部分甚至涉及国家安全与政府机密,存在较大的管理风险,不便与其他数据混合管理。城市大数据挖掘将整合强大的存储平台和运算系统,综合分析跨地域、跨行业、跨部门的海量数据,而群体事件发现、警情分析等功能需要较快速的反应能力,因此,只有专门的设施与专业的团队配备才能满足这样大规模、高敏捷的需求。
3.3 做好人文保障工作
要做好人文保障工作,必须做到其一是基本的安全问题,必须有系统化的策略进行安全和访问控制。城市数据中心是最让黑客们感兴趣的潜在单点,因而要求最严格的安全。
其二是数据利用方面要小心谨慎,不能滥用。如移动电话数据可以在设备拥有者明确同意后,用于感知交通拥塞,但是不能作为超速驾驶的依据,不能让市民感觉身处“全景监狱”。新模型的使用模式对自愿加入的个人及单位要尽可能透明化,日常分析利用时需确保数据中敏感隐私的剥离。
此外还有许多有待讨论的问题,如是否可以“预测即惩罚”。若通过监控个人的特征和行为发现恐怖分子,那么在恐怖活动未实施之前,能否对看上去证据确凿的某个人实施控制?数据的记忆能力及对数据的接触能力将加深“信息的贫富差距”,如何让大数据走向信息互惠?[2]
3.4 顶层设计中融入大数据理念
未雨绸缪。在系统的建设初期就应该集中考虑标准化、端口与互操作问题。不同的城市,甚至同一城市的不同机构,使用不同的模型管理信息。各个部门若形成信息孤岛,加之大数据中存在的众多半结构化数据、无结构数据,将会进一步导致分析困难。因此在城市信息化的潮流中,应首先进行以大数据为核心的顶层设计[3],瞄准城市基础架构与服务中各利益相关者的需求,并注重标准规范建设。
3.5 解决关键技术问题
从国家近年来政策动向及科技基金来看,非常鼓励大数据产业及相关的研究。各城市也应当在应用、实践的过程中,研究攻克大数据分析中技术方面的问题。
3.5.1 基础技术问题
目前大数据分析所普遍采用的MapReduce分析技术在同等硬件条件下,性能远低于并行数据库;但并行数据库在扩展性、容错性的短板导致其无法“胜任”大数据分析的任务。于是,研究人员致力于整合二者的优点,将诸如Vertica、HadoopDB、Teradata等数据库对MapReduce和并行数据库进行了集成,但解决方案还是基于各方的优缺点进行折衷。例如,HadoopDB能实现关系数据库的高性能和MapReduce的扩展性、容错性,但同时也丧失了MapReduce低预处理代价和维护代价、关系数据库动态数据重分布等正面特性[5]。
3.5.2 传统分析手段改进
目前各领域采集到的数据85%以上是非结构化和半结构化数据[6],但较为成熟的数据分析方法与技术主要还是针对结构化数据的。以舆情分析为例,目前主要还是依赖主题检测和追踪、文本分类、观点倾向性识别、自动摘要等基于文本信息识别的技术。随着非结构化、多样性数据的爆炸式增长,对诸如声音、视频、地理位置等所产生的数据进行综合分析是未来的发展趋势,也是必须攻克的技术难点。
3.5.3 技术人员培养
大数据分析技术人员的缺乏也是制约发展的因素之一。目前数据挖掘、大数据分析行业的分析师比较缺乏,以互联网行业为代表的各大公司展开了人才竞争,而城市级大数据分析要求较高,更增加了对技术人员的职业要求。所以各城市要注重大数据分析师的培养,做好人员准备。
CDA注册数据分析师协会在顺应大数据、云计算的潮流下发起成立的职业简称。旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才队伍建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。CDA数据分析师项目包括教育,咨询,考试,认证,机构招聘合作。CDA注册数据分析师协会会员是来自学界、实务界,国内大陆、台湾及国外数据分析和数据挖掘相关领域顶尖的教授、专家.CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11