电子商务运营中的五大数据陷阱_数据分析师
做电商,看懂数据是基本功。软件可以解决繁琐的计算,但解读还需要运营人员有基本的数据分析能力。本文了五个常见的数据陷阱,了解和掌握后可以有效避免一些分析结果的偏差,从而帮助管理者做出正确的决策。
如今,“大数据”的概念被炒得沸沸扬扬。不可否认,数据确实是越来越多了,人们的数据意识也正在增强,尤其是在积累相对容易的电商行业。但面对众多的运营数据,你真的能有效的将其应用吗?先不谈各种复杂的计量模型,笔者从几个简单的统计学概念入手,提醒大家:数据有陷阱,应用需谨慎。
算数平均数,即几个数字相加后除以个数,这也许是大家仅有的对平均数的理解。但其实平均数还有很多,比如中位数、几何平均数、众数等等。先看下面的例1,某店铺一段时间的营业额数据如下:
该店铺12期销售额的算数平均数是300,但有10期数值都在300以下,这样的数值合理吗?前10期的算数平均数仅是210,和300相去甚远。显然后面两期的数值对整体的拉升作用明显。来个更极端的例子,三个人的年收入分别是3万、3万和300万,但算数平均是102万,原本是两个屌丝和一个高帅富,可一平均后大家都成了高帅富。大家很多时候吐槽统计数字有水分,其实这就是算术平均数的陷阱。
那么怎样获得更准确的平均数呢?有人说,“去掉最大值,去掉最小值”,这方法没错,但略显粗暴。我们介绍几个更科学的计算方式。
先看中位数。中位数即将数列从小到大排列后,取中间位置的那个数字作为平均数,若数列是偶数,则取中间两位数的算数平均。例1的中位数是200,显然比300要来的合理的多。
其次是众数,即出现频率最高的那个数。
最后介绍下几何平均数。若要求5个数字的几何平均数,则将这5个数连乘后开5次方。例1中的几何平均数是268,也要比300更接近真实水平。
目前普遍在用的算数平均数,受极值的影响很大,其准确性是值得管理者们注意的。笔者建议管理者将中位数也应用起来,对算数平均的判断起辅助作用。若两者相差过大,则需要找到极值产生的原因。
在EXCEL中,中位数、众数和几何平均数的函数分别是MEDIAN、MODE和GEOMEAN,应用起来非常方便。
目前大家比较熟悉的是同比增长率和环比增长率,同比增长率能够排除掉季节性的因素,反映出较为实质性的增长。而环比能够连续地、动态地反映出指标的变化。但仅有这两个指标有时候是不够的。比如,去年和今年市场行情相差很大,那么同比(今年与去年同期比)的参照性就很不可靠,而环比只看到了这期和上期的差异,若相隔的期数多了,就很难判断现在的状况如何。怎么办?大家不要忘了定基比率,即将固定的某期设为基数,其后各期该期进行对比。
比如某店铺今年1月至12月的销售额数据为(10,12,13,16,18,13,17,19,18,20,25,22),我们将1月数据设为基数100,其后各期与之的比值即为定基比数据(100,120,130,…,250,220)。笔者认为定基比有时更能反映出某段时间的经营成果。比如某项改革从1月开始了,那就将各种运营指标以1月为基期,以后各月与它对比,便能直观反映这项改革带来的效果。
某天你孩子向你报告考试成绩,说考了第9名,你是高兴还是愤怒?先别急着下论断,得先问问几个人考试。若是500人,那你必然赐予拥吻和礼物;而若是10个人,你八成会赏个巴掌。这就是绝对数字排名的局限性。那么我们用个百分比数值来代替之,就免去了这样的尴尬,即排名数值除以总的参与排名的个数。比如我经营50款产品,某款产品销售额排在第8位,那就表明它排在16%。
要多说一点的是,在百分比的排名中,需重视四分位数,即25%,50%,75%三个档次。许多指标的优劣都会以四分卫数来衡量。比如你的转化率在行业内的前25%以内浮动,那你暂时不用担心,将精力放在其他方面,若低于25%了,那你或许要花力气来提升你的转化率了。
对于许多中小型的电商企业,经营的第一步便是冲销售额,因此粗放经营是普态,对各种指标的大起大落习以为常。有了漂亮的增长业绩,稳定性真的不重要吗?笔者不这么认为,尤其是成本,稳定各项成本是对企业发展的一种蓄力。
比如采购成本,许多企业判断其采购成本的唯一指标便是算数平均数,其弊端在上文中已经指出,而对稳定性的认识只停留在人的主观感受或采购曲线的波动上。笔者建议电商们计算方差指标,即EXCEL中的VAR函数,方差越大,表示该指标稳定性越差。
一般来说,一个健康的企业,不管销售额如何变化,其成本的稳定性(绝对值较稳定或者变化率较稳定)会较强,即方差较小。稳定性变差,一般预示着重大变化的来临。面对越来越饱和的市场和越来越激烈的竞争,电商企业急需关注自己运营的稳定性。尤其是与供应链各个环节相关的稳定性,如采购成本、推广费用、物流费用等等,任何指标若变得不稳定了,就该警惕,找出背后的原因。
笔者有幸观察过一个日化店铺的数据,老板非常想知道什么因素对销售额的影响最大。在对其运营数据进行回归分析后,发现做活动的次数和时长对其销售额都没有影响(统计不显著),唯一有影响的是客单价,客单价越低销售额越高。乍看之下,这个结论着实有些让人无语(因为谁都知道)。但模型显示,客单价每降低一元,总销售额提升100多,鉴于其高于50%的毛利率,降价一元可以总体上多赚50块。但是总销售额是万元级的,因此多赚的50元微不足道。所以总体上看,销售额似乎是一个不受人为控制的指标(自然波动)。这似乎是一个谜题。
但促销活动的不显著是值得我们思考的。当然,也许是我们遗漏了某关键的指标,也许仅仅有客单价、促销次数、促销天数、转化率、UV、熟客率等指标是不够的。但不妨自问,我们很多时候是不是太过看重促销和推广了?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26