电子商务运营中的五大数据陷阱_数据分析师
做电商,看懂数据是基本功。软件可以解决繁琐的计算,但解读还需要运营人员有基本的数据分析能力。本文了五个常见的数据陷阱,了解和掌握后可以有效避免一些分析结果的偏差,从而帮助管理者做出正确的决策。
如今,“大数据”的概念被炒得沸沸扬扬。不可否认,数据确实是越来越多了,人们的数据意识也正在增强,尤其是在积累相对容易的电商行业。但面对众多的运营数据,你真的能有效的将其应用吗?先不谈各种复杂的计量模型,笔者从几个简单的统计学概念入手,提醒大家:数据有陷阱,应用需谨慎。
算数平均数,即几个数字相加后除以个数,这也许是大家仅有的对平均数的理解。但其实平均数还有很多,比如中位数、几何平均数、众数等等。先看下面的例1,某店铺一段时间的营业额数据如下:
该店铺12期销售额的算数平均数是300,但有10期数值都在300以下,这样的数值合理吗?前10期的算数平均数仅是210,和300相去甚远。显然后面两期的数值对整体的拉升作用明显。来个更极端的例子,三个人的年收入分别是3万、3万和300万,但算数平均是102万,原本是两个屌丝和一个高帅富,可一平均后大家都成了高帅富。大家很多时候吐槽统计数字有水分,其实这就是算术平均数的陷阱。
那么怎样获得更准确的平均数呢?有人说,“去掉最大值,去掉最小值”,这方法没错,但略显粗暴。我们介绍几个更科学的计算方式。
先看中位数。中位数即将数列从小到大排列后,取中间位置的那个数字作为平均数,若数列是偶数,则取中间两位数的算数平均。例1的中位数是200,显然比300要来的合理的多。
其次是众数,即出现频率最高的那个数。
最后介绍下几何平均数。若要求5个数字的几何平均数,则将这5个数连乘后开5次方。例1中的几何平均数是268,也要比300更接近真实水平。
目前普遍在用的算数平均数,受极值的影响很大,其准确性是值得管理者们注意的。笔者建议管理者将中位数也应用起来,对算数平均的判断起辅助作用。若两者相差过大,则需要找到极值产生的原因。
在EXCEL中,中位数、众数和几何平均数的函数分别是MEDIAN、MODE和GEOMEAN,应用起来非常方便。
目前大家比较熟悉的是同比增长率和环比增长率,同比增长率能够排除掉季节性的因素,反映出较为实质性的增长。而环比能够连续地、动态地反映出指标的变化。但仅有这两个指标有时候是不够的。比如,去年和今年市场行情相差很大,那么同比(今年与去年同期比)的参照性就很不可靠,而环比只看到了这期和上期的差异,若相隔的期数多了,就很难判断现在的状况如何。怎么办?大家不要忘了定基比率,即将固定的某期设为基数,其后各期该期进行对比。
比如某店铺今年1月至12月的销售额数据为(10,12,13,16,18,13,17,19,18,20,25,22),我们将1月数据设为基数100,其后各期与之的比值即为定基比数据(100,120,130,…,250,220)。笔者认为定基比有时更能反映出某段时间的经营成果。比如某项改革从1月开始了,那就将各种运营指标以1月为基期,以后各月与它对比,便能直观反映这项改革带来的效果。
某天你孩子向你报告考试成绩,说考了第9名,你是高兴还是愤怒?先别急着下论断,得先问问几个人考试。若是500人,那你必然赐予拥吻和礼物;而若是10个人,你八成会赏个巴掌。这就是绝对数字排名的局限性。那么我们用个百分比数值来代替之,就免去了这样的尴尬,即排名数值除以总的参与排名的个数。比如我经营50款产品,某款产品销售额排在第8位,那就表明它排在16%。
要多说一点的是,在百分比的排名中,需重视四分位数,即25%,50%,75%三个档次。许多指标的优劣都会以四分卫数来衡量。比如你的转化率在行业内的前25%以内浮动,那你暂时不用担心,将精力放在其他方面,若低于25%了,那你或许要花力气来提升你的转化率了。
对于许多中小型的电商企业,经营的第一步便是冲销售额,因此粗放经营是普态,对各种指标的大起大落习以为常。有了漂亮的增长业绩,稳定性真的不重要吗?笔者不这么认为,尤其是成本,稳定各项成本是对企业发展的一种蓄力。
比如采购成本,许多企业判断其采购成本的唯一指标便是算数平均数,其弊端在上文中已经指出,而对稳定性的认识只停留在人的主观感受或采购曲线的波动上。笔者建议电商们计算方差指标,即EXCEL中的VAR函数,方差越大,表示该指标稳定性越差。
一般来说,一个健康的企业,不管销售额如何变化,其成本的稳定性(绝对值较稳定或者变化率较稳定)会较强,即方差较小。稳定性变差,一般预示着重大变化的来临。面对越来越饱和的市场和越来越激烈的竞争,电商企业急需关注自己运营的稳定性。尤其是与供应链各个环节相关的稳定性,如采购成本、推广费用、物流费用等等,任何指标若变得不稳定了,就该警惕,找出背后的原因。
笔者有幸观察过一个日化店铺的数据,老板非常想知道什么因素对销售额的影响最大。在对其运营数据进行回归分析后,发现做活动的次数和时长对其销售额都没有影响(统计不显著),唯一有影响的是客单价,客单价越低销售额越高。乍看之下,这个结论着实有些让人无语(因为谁都知道)。但模型显示,客单价每降低一元,总销售额提升100多,鉴于其高于50%的毛利率,降价一元可以总体上多赚50块。但是总销售额是万元级的,因此多赚的50元微不足道。所以总体上看,销售额似乎是一个不受人为控制的指标(自然波动)。这似乎是一个谜题。
但促销活动的不显著是值得我们思考的。当然,也许是我们遗漏了某关键的指标,也许仅仅有客单价、促销次数、促销天数、转化率、UV、熟客率等指标是不够的。但不妨自问,我们很多时候是不是太过看重促销和推广了?
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21