“双轮”驱动银行业在大数据技术下转型_数据分析师
2015中国经济“新常态”评述之三
我国银行业“高歌猛进”的十年已告一段落。站在历史新的发展节点,银行业必须加强战略思考,积极谋划网络定位。在继续维护传统优质客户的同时,设法借助大数据及云计算技术去破解那些传统上被认为商业不可持续的信贷领域。可以预料,会有越来越多的传统银行通过系统改造而蜕变为互联网银行。
与经济运行新常态相伴随,当前我国银行业也出现一些新变化:第一,贷款增速较往年显著减少,大约下降了5至10个百分点;第二,银行利润增幅大幅回落,大约下降了10个百分点左右;第三,各家银行的不良贷款呈现趋势性改变,由持续“双降”变为小幅“双升”:在地域上,长三角、珠三角地区成为银行不良贷款高发的“重灾区”;在行业上,制造业和批发零售业等领域的不良贷款呈高发态势。这些变化态势充分表明,我国银行业“高歌猛进”的十年已经告一段落,“银行利润太高了,都不好意思公布”式的感慨恐怕只能成为回忆了。站在历史新的发展节点,我国银行业必须加强战略思考,积极谋划网络定位,为未来发展积蓄潜力。
银行业的新常态,要求银行尽快掌握和深度运用大数据技术。
过去35年,中国经济一路高速发展,并且深度依赖银行信贷。由此,存贷款利差成为银行业过往这些年主要的利润来源。从贷款客户看,很多都是大中型国有企业。现在回过头来看,尽管大中型国有企业仍将是银行业的“兵家必争之地”,可他们对于银行业来说正在变得“僧多粥少”。显而易见,具有一定竞争实力的大中型企业不仅可以从沪深股市、债市筹资,而且也能从国际资本市场上找到自己的资金,对银行信贷的需求并不再像以前那么强烈了。银行之间与其再为争夺这些企业而使出浑身解数,不如另辟蹊径,开辟新天地。与此同时,一些互联网金融企业通过与小微企业等开展业务时大量积累数据信息,再辅以云计算技术,最终解决了借贷双方的信息不对称问题,这很值得国有大中型银行思索和借鉴。
也就是说,银行业应实施“双轮”驱动战略:一方面,传统优质客户还要继续维护;另一方面,设法借助大数据及云计算技术去破解那些传统上被认为商业不可持续的信贷领域。以小微企业贷款为例,目前主要有信贷工厂、单人全流程以及“扫街”三种模式,但无论采取哪种模式,因为抵押物不充分,财务报表不健全,为小微企业提供贷款的风险都很高,人力耗费也较大。但这只是与传统业务模式的比较而言的,即贷款仅仅依赖小微企业的财务质量、信贷状况等少数变量,且对数据精度也要求很严。与之对照,大数据则可能同时涵盖非金融数据,并且通过机器学习,不断总结这些数据之间存在的内在关系,或许数据质量不准确,或许变量千差万别,但只要数据规模足够之大,对一个客户完整、准确的描述就会呈现出来。从当前海外金融机构对于大数据的应用来看,大约有三分之一处在普及和理解阶段,三分之一处在试点阶段,剩下的三分之一则已谙熟应用,并将大数据所要求的工作机制嵌入商业模式与运营模式当中,从而在创新中增强了自我竞争力。所以,我国银行业只有尽快插上“大数据”的翅膀,才有望在与国内外同业竞争中取得优势,并在更好服务实体经济的同时实现自身的可持续发展。
银行业的新常态,还要求各家银行充分利用互联网技术拓展业务。到目前为止,我国能在全国范围内开展业务的商业银行只有18家(开发银行除外),而140余家城商行以及农商行、农合行则只能在特定地理区域内开展业务。这样的监管规定有利也有弊:好处在于,可以让中小银行更加专注区域内的小微企业或“三农”;弊端在于,行政指令并不清楚特定区域内的金融供需关系,假如允许中小银行到东部地区设点,由于竞争激烈,可能会显著改善东部地区的银行服务质量;同时,中小银行也会因为利薄而重返竞争不足的区域。借助互联网金融跨越空间的特点,中小银行很容易在经营上打破地域限制的天花板。不仅如此,对于所有的商业银行来说,若能充分采用互联网经营模式,将大有助于突破经营时间限制,实现7x24小时营业;克服物理网点较少矛盾,或者可以通过缩减物理网点降低经营成本。
眼下,国内不少银行都在开展直销银行业务,比如民生银行、北京银行、兴业银行、上海银行、南京银行、包商银行、江苏银行等等,有的银行还动议成立直销银行法人机构,比如北京银行董事会就通过了《关于设立法人直销银行的议案》。所有这些尝试,都可视为商业银行向互联网金融靠近的一种努力。不过,目前直销银行的业务范围更多仍还限于缴费、理财和消费等业务,真正经营网络贷款业务(如P2P)甚至债权资产转让的少之又少,或许这些都还在构思谋划当中。
客观地说,今天,按照独立法人机构设立互联网银行(或称网贷银行、直销银行等)的时机已逐步成熟:第一,我国智能手机使用已经相当普遍,用户数量远远超越任何一家大型商业银行,已能为互联网银行发展创造广阔的市场空间;第二,目前民间资本投资互联网金融十分活跃,只要能够合理控制风险,就没有理由剥夺商业银行开展网络借贷业务的权利,否则相对于民间资本来说就是一种新的不公平;第三,随着《关于促进互联网金融健康发展的指导意见》的对外发布,相信银行业监管部门研究制定网络借贷监管意见的步伐也会全面加快,创设互联网银行的政策风险势必大大降低;第四,我国现实中的互联网银行雏形已经出现。打开前海微众银行的主页,就可看到上面赫然写着“我们是银行?我们是互联网公司?我们是互联网银行!”完全有理由相信,成立互联网银行子公司只是万里长征的第一步,将来会有越来越多的母行通过系统改造而蜕变为互联网银行。否则,在汹涌澎湃的互联网化发展的大潮已经来临的时代,商业银行就会真的被比尔·盖茨言中,成为“21世纪行将灭绝的恐龙”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31