大数据对教育的挑战_数据分析师
“在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。作为万物之灵,人类本身就有逻辑推断和自组织的能力,需要将之发掘。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。”
印度教育科学家苏伽特·米特拉是一个里程碑式的人物。1999年,他去了印度的很多偏僻乡村,那里的人既不懂英语也没见过电脑。苏伽特在孩子们经常聚集的街头的墙上装上连接互联网的电脑屏幕,配上鼠标,然后离开那里。几个月后,试验表明,孩子们无师自通,学会了使用电脑。在以后的十多年里,苏伽特在印度、南非、柬埔寨、英国、意大利等地还进行了类似的以生物、数学、语言等为内容的教育实验。结果证明,在不需要老师或科学家输入逻辑和程序的情况下,学习者可以独立自主地完成学习,这就是“自组织学习”。由此,苏伽特认为:教育是一种自组织行为。
学习是一种自组织行为,那么,教师和教学机构的作用便要重新定位。互联网的不断普及,网络资源进一步开放,在线教育就不能仅仅是把传统的课堂搬到网络上,这样的做法也许更加违背学习规律。新媒体教育联盟在做了相关历史研究的基础上,总结了诸多人类的学习行为:社会学习、可视化学习、移动学习、游戏学习、讲授学习等,每一种学习方式,在信息和知识的载体方面,基本上都有相应的技术基础。换言之,技术既可能扩展人类的学习方式,也可能限制人们的学习方式。一旦有新的技术出现,这些新技术就会改变信息和知识的传播模式,那么,人类的学习方式也会相应地产生根本性的变化。在互联网时代,开放的社会和资源将进一步解放人们的学习,越来越多的人不用待在学校里被动地接受学习,他们会把自组织学习发挥得淋漓尽致。
在美国新的在线教育浪潮中,那些拥有大量粉丝的大学教授,轻易能够拿到数千万美金的创业基金。这对于传统的大学是一个巨大的挑战,正是在这个背景下,促动了大学改革的神经:再不顺应潮流,那么校园将不是最优秀教师的聚集地。然而,教育要想真正获得新生,不仅仅在在线教育上,而在于传统教育理念的变化:教师的功能,应该把低层次的和可拷贝的交给大投入的电影模式去做。而未来,教师将成为教练,师生将走向训练场,如何从传统的篮球场,变成灯光幻影般用新技术武装的“主场”。
在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。教育本质是对学习者的支持和服务,而不是对他们的规训和教化。作为万物之灵,人类本身就有逻辑推断和自组织的能力。发掘这种逻辑和自组织的能力才是正道。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。学生得到解放,人力资本成倍地增长。
在这场教育的变革中,最严重的问题已经不是教育资源的缺乏,而是毫无天分的教师在错误的方向上还在“勤奋地工作”。苏伽特说:“对于教育者来说,这是一个大转变的时代。我亲眼目睹着教育界的各种力量在重新洗牌。或许我们说‘教育革命’未免言过其实,但是各种变化的确在更迭着。教学模式的多元并存会是一个长期存在的现象。但是毫无疑问,新技术从外围给教师增加了新的竞争对手。新技术的应用又导致学生在心理预期、学习习惯等方面的变化,这就从核心和内部促进着教学过程的转变。学生变了,不如以前‘好带’。这并不是坏事,在这当中,不知潜藏了多少机遇和可能性等待着有心之人去发现!”
苏伽特有一个很具有代表性的观点:“你能够想象和确认,你所教的和考核的东西,在今后20年学生们走向工作岗位还管用吗?”为此,苏伽特分析,在今后的大数据时代,只有三种最基本的东西是学生用得到和必须学的东西:一是阅读,二是搜索,三是辨别真伪。谈到数学,苏伽特说:“也许数学,将成为一种体育运动。”基本能力加每个孩子特长的“体育运动”,构成了苏伽特心目中的未来教育,这种体育运动也许是数学、领导力、音乐、美术、篮球……数学也许是每个孩子的体育运动,也许是一部分专业运动员的体育运动,但大数据时代的数学,将不会是教育的基本标准和指向。
在当今的信息时代,未来教育在互联网等技术的作用下变得越来越个性化,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。在逐渐到来的大数据时代,互联网教育与学校教育将逐渐分离,更多的交往互动、个性化服务和灵活的学制将使学校获得新的生机。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20