大数据对教育的挑战_数据分析师
“在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。作为万物之灵,人类本身就有逻辑推断和自组织的能力,需要将之发掘。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。”
印度教育科学家苏伽特·米特拉是一个里程碑式的人物。1999年,他去了印度的很多偏僻乡村,那里的人既不懂英语也没见过电脑。苏伽特在孩子们经常聚集的街头的墙上装上连接互联网的电脑屏幕,配上鼠标,然后离开那里。几个月后,试验表明,孩子们无师自通,学会了使用电脑。在以后的十多年里,苏伽特在印度、南非、柬埔寨、英国、意大利等地还进行了类似的以生物、数学、语言等为内容的教育实验。结果证明,在不需要老师或科学家输入逻辑和程序的情况下,学习者可以独立自主地完成学习,这就是“自组织学习”。由此,苏伽特认为:教育是一种自组织行为。
学习是一种自组织行为,那么,教师和教学机构的作用便要重新定位。互联网的不断普及,网络资源进一步开放,在线教育就不能仅仅是把传统的课堂搬到网络上,这样的做法也许更加违背学习规律。新媒体教育联盟在做了相关历史研究的基础上,总结了诸多人类的学习行为:社会学习、可视化学习、移动学习、游戏学习、讲授学习等,每一种学习方式,在信息和知识的载体方面,基本上都有相应的技术基础。换言之,技术既可能扩展人类的学习方式,也可能限制人们的学习方式。一旦有新的技术出现,这些新技术就会改变信息和知识的传播模式,那么,人类的学习方式也会相应地产生根本性的变化。在互联网时代,开放的社会和资源将进一步解放人们的学习,越来越多的人不用待在学校里被动地接受学习,他们会把自组织学习发挥得淋漓尽致。
在美国新的在线教育浪潮中,那些拥有大量粉丝的大学教授,轻易能够拿到数千万美金的创业基金。这对于传统的大学是一个巨大的挑战,正是在这个背景下,促动了大学改革的神经:再不顺应潮流,那么校园将不是最优秀教师的聚集地。然而,教育要想真正获得新生,不仅仅在在线教育上,而在于传统教育理念的变化:教师的功能,应该把低层次的和可拷贝的交给大投入的电影模式去做。而未来,教师将成为教练,师生将走向训练场,如何从传统的篮球场,变成灯光幻影般用新技术武装的“主场”。
在信息技术大革命的今天,规训与教化在撤退,支持和服务在推进。教育本质是对学习者的支持和服务,而不是对他们的规训和教化。作为万物之灵,人类本身就有逻辑推断和自组织的能力。发掘这种逻辑和自组织的能力才是正道。正在发生的教育革命并不是要把传统的课堂搬到网上,而是让新技术解放人们本来就有的学习能力和天分。学生得到解放,人力资本成倍地增长。
在这场教育的变革中,最严重的问题已经不是教育资源的缺乏,而是毫无天分的教师在错误的方向上还在“勤奋地工作”。苏伽特说:“对于教育者来说,这是一个大转变的时代。我亲眼目睹着教育界的各种力量在重新洗牌。或许我们说‘教育革命’未免言过其实,但是各种变化的确在更迭着。教学模式的多元并存会是一个长期存在的现象。但是毫无疑问,新技术从外围给教师增加了新的竞争对手。新技术的应用又导致学生在心理预期、学习习惯等方面的变化,这就从核心和内部促进着教学过程的转变。学生变了,不如以前‘好带’。这并不是坏事,在这当中,不知潜藏了多少机遇和可能性等待着有心之人去发现!”
苏伽特有一个很具有代表性的观点:“你能够想象和确认,你所教的和考核的东西,在今后20年学生们走向工作岗位还管用吗?”为此,苏伽特分析,在今后的大数据时代,只有三种最基本的东西是学生用得到和必须学的东西:一是阅读,二是搜索,三是辨别真伪。谈到数学,苏伽特说:“也许数学,将成为一种体育运动。”基本能力加每个孩子特长的“体育运动”,构成了苏伽特心目中的未来教育,这种体育运动也许是数学、领导力、音乐、美术、篮球……数学也许是每个孩子的体育运动,也许是一部分专业运动员的体育运动,但大数据时代的数学,将不会是教育的基本标准和指向。
在当今的信息时代,未来教育在互联网等技术的作用下变得越来越个性化,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。在逐渐到来的大数据时代,互联网教育与学校教育将逐渐分离,更多的交往互动、个性化服务和灵活的学制将使学校获得新的生机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31