大数据挖掘如何让统计教学妙趣横生_数据分析师
数据挖掘""""="" width="" ""619""""="" height="" ""442""""="">
北京被业界尊称为asp.net之父的微软公司云计算与企业级产品工程部执行副总裁scottguthrie先生来华传道、解惑,对当前技术趋势进行了独到解析,并与中国的开发人员分享了微软的云战略和他从程序员一路走来的成长历程。scott的到来吸引了众多中国开发者的关注,并分别在现场和通过在线直播与scott进行了面对面。
scottguthrie在1997年从杜克大学的计算机科学专业毕业后,即加入了微软公司。1998年,他与markanders一起创造了众所皆知的 asp.net,带来了全面利用计算与通信技术平台的一场革命,对全球it界产生了重大意义。目前,scottguthrie主要负责微软云计算基础架构、服务器解决方案、数据库、管理和开发工具等业务。他的工程团队致力于开发包括microsoftazure、windowsserver、 sqlserver、activedirectory、systemcenter、visualstudio和.net等产能品。
当我们进入到移动为先、云为先时代,丰富多样的设备与云服务共同创造了生产与消费数据的新高潮,赋予全球每个人、每个企业更强的创新动力。技术的开发也围绕着云展开。scottguthrie认为,开发能力是云计算的核心要素。他希望通过云计算的普及,将跨平台技术、服务和工具整合在一起,提供全面整合的计算体验,让开发者能以企业级规模实现快速创新,实现让计算简单易用的目标。
微软的核心价值是为移动为先,云为先的世界创造生产力和平台,并由此架构更广泛的生态系统,与合作伙伴和开源社区相关的跨平台工具、技术与服务进行整合,最大化微软技术的价值。scottguthrie详细介绍了azure的运行特性、所支持的丰富功能及服务。他表示,针对各种开源的框架,azure 不仅可以创建复杂的应用,而且可以自我配置,使其构建过程变得更加容易。此外,scottguthrie还现场亲自编写代码演示如何运用 microsoftazure进行web开发服务。这不仅展现出scott个人的技术实力,同时也代表着微软在云计算领域快步向前满怀信心。
微软不断加大在中国的研发投入以及技术分享与创新合作的力度,包括在华建立云计算创新中心、微软企业级云平台office365和 windowsazure落地中国、微软sqlserver2014数据平台投入商用、实施citynext计划以及启动创投加速器项目、成立微软亚太科技有限公司,夯实在华云战略布局助力云创新等等一系列努力,充分证明微软与产业合作伙伴、政府、学术机构和高校以及各行业通力合作,共同构建适合中国国情的本地化云计算生态系统的努力,以及进一步融入中国经济发展的决心和承诺。
随着大数据时代的到来,无论是在偏重理论的数学、统计学院,还是在关注应用的经济管理、mba/emba、工业工程、公共卫生、临床医学、作物栽培,甚至是在历史、艺术、体育等专业中,统计学都已成为一个热门的学科。因此,本文将以统计教学为例,结合笔者近几年来与国内外高校老师和学生的工作交流经验,谈一谈高校教学改革的体会。
其实,近几年来关于高校课堂教学改革的讨论也很多,有的说要增大学生参与课堂的力度,有的说拓展课堂教学的宽度,还有的说要加快教学手段的现代化程度,等等。这些都有道理,然而,从另一个角度而看,还有一件事必不可少,那就是需要调整课堂教学的顺序。用一句经典的语句来概括,叫做 dothelastthingfirst(即:最后的事情最先做)。
说到调整课堂教学的顺序,那就要先来谈一谈传统的统计教学顺序通常是怎么样的:首先说明这节课是来学某某定理(或理论)的,其次讲一讲这个定理成立的假设条件是什么,然后在现场推导在假设条件成立的情况下,如何一步步得到这个最终定理的(这部分往往会成为课堂的重点),再讲讲这个定理有什么特点(有时候还需要证明一下这些特点),最后才介绍这个定理的应用价值。时间宽裕的话会拿一些简单的数据跑一跑现成的程序,时间不够的话就让学生回家做习题了。
这样的教学过程固然有其可取之处,但也有一个先天性的缺陷:很多数理基础不够扎实的学生很可能在还没有感受到统计学魅力的情况下,就已经迷失在一大堆复杂的公式和数字之中,对统计学产生了厌倦乃至恐惧的情绪,更谈不上激发他们的学习兴趣了。
破解这个难题的方法其实也很简单原先的教学内容一个都不能少,但需要改变教学顺序,并且适当地增加一些新鲜元素。例如:先通过一两个贴近生活或热点新闻的案例(这往往需要教师结合实际情况不断开发更新)来讲述某某定理的应用价值,再结合现代化的教学手段与工具简明扼要地突出该定理的特点,在此基础上再详细说明推理过程。如果时间不够的话,推理过程可以让学生课后阅读。
这样一来,教学效果就会得到明显的改善。因为学生们在活生生地看到掌握该理论知识的美好前景之后,学习热情容易被最大限度地激发出来,再大的苦也愿意吃,再多的课外学习任务也愿意完成,其余的所有问题也就不是什么问题了。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21