你还在为弄不懂Hive、Spark、Pig这些编程语言而抓耳挠腮吗?别担心,一场竞争正让像Hadoop这种复杂的大数据技术能更容易被非专业用户使用,你还能享受它让你发家致富的额外好处。
对,就是你。
几年前,Cowen&Co.的前分析师PeterGoldmacher在一份调查简报中表示,毕竟,你越靠近大数据技术的最终用户,你 的回报就越大。他认为,在大数据的世界,最大的赢家并不是这项技术的供应商,而是那些会用它来创造全新的产业或者瓦解传统业务的公司。
随着时间一天天推移,Goldmacher在2012年做出的预测显得越来越正确。大数据基础的建造者应该得到赞扬,但从中获利最多的是那些与技术营销和销售专家关系最密切的公司,而这些人可能都不知道怎么从一张数据透视表中进行并行运算。
提供解决方法而不是技术
我们已经在一些公司身上见过这种做法,比如JohnDeere,它们运用Hadoop和NoSQL数据库技术开发了非常强大的以数据为导向的应用。当硅谷还把自己当做宇宙的中心时,外面那个更广阔的世界正把大数据用在最有用的地方。
如果不是这样我们才会感到惊讶。正如Goldmacher写的,这一点总是适用于科学技术:正如之前所说,如果我们回顾企业资源计划的历史,超过两 百家公司被创立,在标准商业流程的自动化过程中积累资本。这意味着1990年的投资者只有不到0.5%的可能性选择SAP或者ORCL作为最终赢家。但 是,如果投资者在1990年购买了Dow旗下三十家开展了企业资源计划的公司的股票,那他就能减少35%的一般成本和管理成本,并通过大规模自动化生产将 收益提高五倍,市值也将增加将近八倍。
当然,大数据基础框架服务提供商也会大捞一把,比如Cloudera。Cloudera的市值已经达到几十亿美元,其它一些公司,像DataStax和MongoDB之类,市值也已经超过了十亿美元。
但是从这些公司的软件中获益最多的并不是它们自己,理由如下:
大多数大数据技术是开放性资源,这意味着大家都能采用它,很难从中盈利。
这些技术主要的用户是像Hadoop这种发展中的公司,这些公司对推动技术的采用非常重要,但是它们不愿意花钱。
与消费者关系更密切的公司和资金相对充足的公司更可能用大数据盈利。
根据第一点理由,Cloudera的合伙创始人MikeOlson认为,你不可能靠封闭资源平台获得成功,你也不能仅凭开放的资源建立一个成功 的独立的公司。这使得供应商把所有权和开放资源许可结合起来,从而使收益最大化,但是那些处在行业顶端的公司就不用担心这种情况。
赢家是
显而易见,他们就是应用(具体服务)供应商,他们不向最终用户展示技术的复杂性,只为他们所提供的服务收费。Workday的合伙创始人AneelBhusri几年前就有了这个想法。
McKinsey&Co.详细说明了大数据对不同产业的影响:
这些公司包括我前面前面提到的JohnDeeres,但论起技术上更主流,谁会胜利呢?
答案就是那些最会隐藏产品的复杂性、能让用户轻松操作的公司。
举个例子,微软就符合这种模式。看看他对Azure的机器学习做了什么。Azure机器学习有望消除几乎全部首创费用中与制作、开发和扩展机器学习方法有关的部分,并且可视工作流程和首创模板可以让一般的机器学习任务更简单。
虽然微软有很多可挑剔的地方(我就经常找它的茬),但它在减少复杂计算中的困难这一方面做的比其他任何公司都多。Windows、VisualStudio,还有很多其他的科技使得主流系统管理员和开发者发挥创造性成为可能,Azure机器学习效仿了这些科技。
极客消失了!
但是,我们要进一步考虑。毕竟,虽然大数据给开发者和系统管理员用已经不错了,但真正要解决的问题是这样让大数据更容易为你我这样的普通人使用,Wikibon分析师DaveVellante有了下面这个想法:
商业智能造就了一类分析师,但它始终没有成为主流。我们希望大数据能成为主流。
有一个看起来很适合做这件事的公司就是Adobe。一直以来Adobe都很关注创造性的职业,几年前对Omniture的收购使得Adobe稳步跨越进了大数据世界,但它更关注帮助营销专家获得潜在顾客。
管理大数据的重点不在于巨大的数据量,更多的是关于不断增加的数据来源和数据类型。对一个像Adobe这样的公司来说,为了让营销专家根据广告、图表等内容在极短时间内做出决策,它要搜集和分析来自社会媒体、现金收据等等的各种信息来了解顾客的行为。
该清除杂草了
微软和Adobe仅仅是大数据可能的赢家的两个例子,当然还有很多其他公司可能脱颖而出,希望这里面的有你的公司。
为了达成这个目标,我们需要停止对大数据技术中没什么用的东西的钻研,转而去关注它们能创造的商业价值。这种价值能通过我们使用的应用传递,不会凭空消失。
Olson在接受博世的DirkSlama的采访时说,他和很多仅仅把大数据当做数据的人聊过,他觉得这些人不是理想的工作伙伴,因为他们从根本上来说不是以商业问题为导向的。大数据时代真正的赢家是那些专注于解决实际商业问题的人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06