大数据的终极目标就是成为你肚子里的蛔虫
前我曾在自己的脸书上问朋友,关于大数据很夯,有没有大家推荐的好书或是必看之「圣经等级」的可以参考?结果回应相当热烈,推荐也不一而足,从商业统计学到行为分析学,也有学界作者到业界作者,约10来本书,让人看得眼花撩乱。
转念一想,我既然有这问题,大概多数人也有这问题吧。意思是说,科技发展进到物联网时代,「大数据」这名词被不断提及,结果认真想了解才发现,这真是一门好深的学问,不仅仅只是以统计为核心,必须得从使用者的身份识别开始,逐渐扩及到情境、行为、认知、消费,以及企业与使用者之间的互动,通通都有值得被纪录与分析的思维在里头。
比方说,之前Google花了台币将近 1 千亿,买下Nest 这家公司,就让我感到有些疑惑。Nest 是在2010 年由 Tony Fadell 和 Matt Rogers 所创立的公司,在 2011 年发表了产品 Thermostat(节温器);2013年则推出了 Smoke sensor(烟雾感测器),双双获得超级好评,但即使卖得好,我还是想不出这与 Google何以愿意砸重金购併有什么关联性。
要回答这个问题,就得从大数据观念着手。简单说,真正影响消费者购物决策的关键,并不是从他在网上挑东西、点击、浏览的数据下手,而是得「还原」他当时的「情境」,那才是关键。
作者举了一个很有意思的案例: A 君上班途中,不经意看到路人穿着一件T-shirt 觉得很好看,到了公司之后,打开电脑,立刻上网搜寻,没想到跑出了10 万件商品,看的他眼花撩乱。正当他想继续看下去的时候,老召集所有人开会,于是他没有往下找,到了会议室开始进行会议。
会议进行中,他觉得有点无聊,于是拿出手机开始重新搜寻,却始终都没找到那件让他魂牵梦萦的 T-shirt。浏览时突然一个推荐商品映入他的眼帘,是一款他向来就很喜欢的手机品牌正在大促销,于是他想都没想就在线上买了这支手机。
如果你是数据分析师,单纯只从这位 A 君的线上浏览行为去分析,你一定会感到非常疑惑:为什么他明明是在找T-shirt,最后却买了手机?如果你将这样的行为列入演算的推送机制,未来就很可能会错判消费者的动机与消费习惯。
这就是作者想强调的重点,理想上,企业应该要能「还远」使用者的当下情境,才能理解消费者心裡想要的是什么,进而推送最正确的资讯给他。作者也举了阿里巴巴实际的一个案例,某一年的「十一黄金周」,他们发现使用 iPad 上网买东西的人突然暴增,原来是因为当年中国政府实施黄金週高速公路不收过路费的政策,于是大家都塞在高速公路上,于是只能用iPad 购买商品。同样的,如果你以为那是因为使用iPad 有比较好的浏览经验,而误判消费者心裡所想的,那也会导致企业判读资讯错误,而引发出错误的结论与企业决策。
到这里,我终于能明白,为什么 Google 会愿意砸下重金买 Nest,因为这是他们布局的一环,最终目的就是想知道你从起床到用早餐,到出门上班的交通期间,在上班期间内,中午用餐,下班后交通期间,晚餐,睡眠的所有讯息;企业也想收集你在家、在户外、在工作、在休息等……所有行为与情境,好作出对你这个人在连上网的购物行为做交叉分析,进而还塬你当时可能面对的状况与想法,掌握你真正的消费动机,推播最正确的资讯与商品给你。
这就是大数据想达成的终极目标:成为你肚子里的蛔虫,并且试图餵出你最想要的东西,提升流量,提升点击率,提升购买率,提升再购买率。
虽然听起来很可怕,因为你所有的行为都被大数据所掌握,然而活在网络时代的你,使用智能手机的你,大概就已经离不开这个处处被收集资料的网络,你唯一可能避开的方式就是不使用网路与电脑,不使用手机上网,也不用网路购物,但我相信这对绝大多数人来说已经是不可逆的行为。
无论如何,大数据的时代已经来临,只是悄悄在你看不见的地方蓬勃的运行着。我始终相信,大数据为人类带来的正面意义会远大于负面,只是你得有意识的了解它运作的逻辑—无论你是利用数据或被数据利用,都应该对大数据有所了解。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20