多年来,遗传学家Helene Royo使用商业软件分析自己的研究数据。她将DNA从发育中的小鼠精子里提取出来,送去分析,然后利用名为GeneSpring的软件研究结论。“作为一个科学家,我希望能理解自己做的任何东西。”她说,“但这类分析不允许这样:我只是按个按钮,并得到答案。”但随着Royo比较不同染色体基因活性的研究日益复杂,她意识到商业工具已无法满足她的数据处理需求。
之后,Royo有了一个选择:将基因序列发给专家或自己学着分析数据。她决定冒险一试,并开始学习如何用免费的开源软件包R解析数据。它帮助Royo所在的瑞士巴塞尔弗雷德里希米歇尔研究所生物医学研究中心在软件上运行了常规课程。但她还沿行着一个更宽广的趋势:对于那些尝试放弃使用商业软件的学者而言,R是可供选择的数据分析工具。
除了免费外,R受欢迎的部分原因是它对不同使用者呈现不同面貌。首先,它是一种编程语言,要求经由命令行输入,这似乎禁止非编码者使用。但初学者能够调用预先设置的软件包,其中包含了已经做好的统计分析和数据可视化命令。“R非常简单,它能为我做任何事。”Royo说。
而这也是R的开发者在上世纪90年代研发该软件包的初衷。新西兰奥克兰大学统计学家Ross Ihaka和Robert Gentleman对计算机十分感兴趣,但是缺乏需要的实际软件。因此,他们开发了一种能执行自己需要的数据分析的编程语言。R正是取自开发者名字的首字母。
在互联网兴起之初,R迅速吸引了全世界需要统计软件和乐于贡献点子的科学家的兴趣。Gentleman和Ihaka决定公开他们的源代码,而编码专家迅速开发出针对特定领域的预编程程序和命令。“我能写出天文学领域的人适合使用的软件。但如果是天文学者为同领域的其他人写软件会更好。”Gentleman说。
荷兰皇家海洋研究所海洋学家Karline Soetaert也同意该观点。2008年,她计划检查斯凯尔特河河口附近浮游生物的健康情况。Soetaert想要使用沿河收集的数据计算浮游动物的死亡速度,但R无法做到。为了解决该问题,她与两位生态学家开发了deSolve——写入R的首个程序包,以解决微分方程。她提到:“其他软件也能计算,但却昂贵且是闭源的。”现在,流行病学家也使用deSolve模拟传染性疾病,基因学家用它研究基因调控网络,药物开发者则将其用于药物代谢动力学。
到2003年,R首次发布10年之后,科学家已经开发出超过200个程序包,而且有关“R项目”的首个引用出现。现在,已经出现了针对各种专业的近6000个数据包。它们帮助科学家比较人类和尼安德特人基因组、建模人口增长、预言股票价格等。专家能使用R绘制手稿,他们可以嵌入源代码,通过knitr编译直接生成一份报告。2013年,在爱思唯尔的斯高帕斯数据库索引的科学文章里,有近1%援引了R或其中一个数据包,而在农业和环境科学领域,这个比例更高。
对于许多使用者而言,R作为统计学软件的质量十分引人注目。美国田纳西州大学统计学家Robert Muenchen表示,该工具与SPSS和SAS等商业数据包一样。在过去10年中,R已经赶上并超过了市场领导者。“大概在2014年夏天,R已经变成了使用量首屈一指的统计学程序包。”他说。
在基因组学和分子生物学领域,一个名为Bioconductor的软件项目紧随R之后。它能帮科学家处理和比较庞大的基因序列,利用基因表达综合数据库等数据库查询结果以及上传数据到数据库。它包含近1000个程序包,其中一些能帮助将新一代测序实验得出的数百万DNA片段与有注解的基因相连。
随着对R的钻研,Royo接受了密集训练:在弗雷德里希米歇尔研究所生物信息学部负责人Michael Stadler的监督下,她花费了约半年时间研究R和Bioconductor。伯克利数据科学研究所生态学家Karthik Ram表示,现在有足够的机会去学习R。Ram主动帮助科学家学习和开发R。他和同事免费提供培训课程,不需要任何现有编程技巧,并能针对科学家的特殊问题。
加州圣地亚哥州立大学生态学家Megan Jennings接受了相关培训。她追踪山猫、美洲狮和其他野生动物,以理解它们的行为。最终,36台相机在1年时间里拍摄了40多万张时间标记照片。最初,她手动选择出想要的照片,并将它们输入一个名为PRESENCE的黑匣子程序。但在Ram的帮助下,她写出了一个能够读出标记照片的R程序包,并对照片进行精简,然后将自定义数据子合集发送到R预先存在的模型程序包中。“之前我要动手挑拣1个小时的照片,而现在只需要做5分钟。”Jennings说。
另外,R的一个最伟大之处就是它的在线服务。Muenchen表示,有关R的讨论区远超针对其他商业统计软件的在线提问。“这种情况十分常见,一个人发布了一个问题,然后其他人在半小时内开发出程序包来回答。”他说。这样的快速反应对基础研究领域的科学家非常重要。“我几乎能在线找到任何问题的答案。” Royo说。
但与其他技能一样,学习R并非一夕之功。但Jennings表示,它值得学习。“将它作为一种投入:为了之后的节省时间和构建解决多种问题的技巧。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31