大数据带来大机会运营商需关注四大课题
随着网业分离的加速实施以及OTT厂商和虚拟运营商的逐渐崛起,电信运营商正逐步沦为“流量管道”,运营商的语音、短信等传统业务受到前所未有的冲击。
有专家认为,改变当前专注于粗放式的用户规模增长,寻找更加精细化的盈利新方式来服务客户,挖掘新兴业务的市场价值,以及降低IT系统建设成本和培育内部系统自生能力是运营商在发展转型阶段的重要课题。
支撑精细化运营,全面提升传统电信服务水平
据悉,目前我国的移动业务渗透率已经接近90%,依靠新增用户已经无法长期支撑运营商收入的稳步增长。虽然4G建设力度增大使得中国移动和中国联通的新增移动用户数出现正增长,但是中国电信上半年的新增移动用户数连续数月出现负增长。同时国资委向三大运营商下发通知,要求在未来三年内,连续每年降低20%的营销费用。这样使得运营商的终端补贴策略被迫进行重大调整,放缓用户增长速度。利用数据资源对存量用户进行价值深挖、提升ARPU,降低经营成本,调整收益结构,才是运营商进行用户维系、价值提升的利器。
存量用户维系的前提在于对用户群体的准确分类。以往用户细分的数据来源是业务支撑系统(Business Support System, BSS)的用户消费习惯和消费特征数据。这些数据可以支撑处于成长型或者稳定型的用户维系工作,但当用户进入到波动或者离网阶段,营销侧数据无法展示深层次的用户业务数据。在大数据挖掘技术的带动下,运营商通过整合用户访问记录、位置信息、终端信息、信令监控等网络侧数据,强化营销侧数据和网络侧数据的关联关系。数据分析部门通过构建离网用户数据模型,预判潜在离网用户,加强对VAP (Very Annoying Person)用户的预防式管理,通过主动关怀降低用户离网预期。
“在面对成长型或者稳定型的用户时,运营商同样可通过强化网络侧数据挖掘以对用户价值进行深层次刻画,根据分析结果对用户进行正确的聚类分群以寻找潜在高价值客户。对不同分类的用户制定有针对性的营销计划,为不同用户群体提供其喜爱的产品组合,以实现分客户群的精准营销。”赛迪顾问通信产业研究中心分析师杨光建议。
加快“去电信化”进程,挖掘新兴业务的市场价值
当前在互联网浪潮的冲击下,电信运营商已经认识到基础电信业务市场将持续低迷,未来业务的增长点主要由增值电信业务带来,“去电信化”的发展思路成为运营商转型调整的主要手段。但是“去电信化”并不意味着“互联网化”,运营商在基础网络上的优势意味着未来发展支柱依然是为其带来丰厚用户群体的管道。即使在网业分离的趋势背景下,运营商将继续以管道为主,依托管道中的流量信息,发展增值业务,延伸产业链条向个性化定制化发展,向信息服务领域延伸。
大数据正是迎合当今发展态势,成为加快运营商“去电信化”的利器之一。以集客用户为例,传统上的运营商集客业务大致分为三类,即基础业务、行业应用和行业解决方案。在互联网时代,集客用户的营销策略制定很大程度上取决于终端用户信息的分析程度。但由于集客用户只专注所在行业领域,缺乏宏观数据视角。因此,运营商在网络资源方面的优势可以为集客用户提供更加完善的IT解决方案。通过定制化报表分析等手段,指出用户发展现状和未来发展趋势,支撑用户进行科学决策,同时为运营商预埋商业机会,进一步推出定制化服务产品,实现精细化运营。
打破烟囱式系统架构,降低IT系统建设成本
据了解,经过多年的建设,电信运营商已经建成了完善的IT支撑系统,形成了从集团公司到各省级公司的两级支撑模式。在支撑系统发展之初,由于业务和数据量较少,运营商普遍采用烟囱式架构。目前虽然各系统之间相互独立,各自管理,但却造成了大量的“数据孤岛”,而且由于数据模型和系统入口缺乏统一规划,软硬件资源共享度低。
随着大数据的到来,系统数据共享和综合应用将成为大数据产业链的发展基础。运营商的IT支撑系统也面临向集中化、标准化和服务化的方向发展。整合BSS系统、运营支撑系统(Operation Support System, OSS)等多系统数据,构建数据分散采集、独立存储、集中应用的IT系统,实现支撑系统的集中化和数据模型的标准化,推动集约化的运维体系和端到端服务体系的建立,将有效促进网络质量和运行维护效率提升。
推动运维部门职能转变,培育内部系统自生能力
在大数据概念来临之前,运营商的经营决策通常依靠BSS系统支撑。BSS系统内的用户营账信息、计费数据等内容能为决策者提供决策分析支持。大数据的到来让运营商意识到网络侧数据将成为价值蓝海,OSS系统内的网络运行和监控数据隐含着业务质量与用户感知的真实情况。
对此,建议运维部门可通过对现有组织、流程、指标和系统多维度的优化调整,建立面向用户感知的运维综合评估体系。运维部门配合市场部门将用户业务质量监控纳入日常工作,将客户服务和市场支撑意识真正融入运维工作,支撑市场部门营销活动。如此,运维部门将从被动响应走向主动运维,从而实现运维部门从网络运营中心(Network Operation Center, NOC)向业务运营中心(Service Operation Center, SOC)的转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31