大数据时代,再不努力,小心被机器人枪了饭碗,专家们对于未来的情况存在意见分歧。这可能看上去挺正常,但如果皮尤研究中心(Pew)进行的一项关于机器人替代劳动力的新调查得出如此结论,那就意义重大了。关于“机器人抢占工作岗位”的所有讨论中,2551名受访专家在下列问题上意见分歧巨大。
到2025年,被网络化、自动化的人工智能应用和机器人设备所替代的工作岗位数量会超过它们所创造出来的岗位数量吗?
可能最明显的一个关键结论是,不管预言家们在什么时候声称哪些工作将会自动化、哪些不会,人们总是半信半疑。这类的研究的价值在于能够帮助我们思考自动化设备将在社会中扮演什么角色,但事实是我们还不知道哪些工作在什么时候会被自动化,也不知道有多少这样的工作。
有人担心会被机器取代,对他们来说,专家们有意见分歧似乎是一种安慰——不幸的是,事实绝非如此简单。
相反,第二个关键结论是,对上述问题持怀疑态度的人占了上风。传统观点始终认为,虽然短期内工人会被新技术所替代,但从长期来看就业率并不会降低。
芝加哥大学今年二月曾邀请经济学家参与投票,结果验证了上面这个长久以来的共识。受访者中仅有2%的人认为使用自动化设备会导致美国就业率降低。
在这个背景下,皮尤研究中心所得出对半开的结论更让人头疼。其中的差距一部分可能反映出经济学家总体上保持乐观,但是也释放出信号:这一波新技术带来了前所未有的影响。
过去,对新技术导致失业的担忧还是虚惊一场,原因有两点:一是人们对商品和服务的需求持续上升,二是工人们学习新技术后找到了新工作。相比过去,我 们不再需要那么多人来生产食品,但是我们需要更大的房子,更快的车子,还有更广泛的娱乐需求,这些足以填补并超出原来的需求。农业从业者最终找到了新工 作,生产出满足新需求的产品,社会也继续前进发展。
麻省理工学院的Brynjolfsson和Andrew McAfee在他们的新书《第二次机器时代》中对上述过程提出质疑。他们认为当今的数字化变革的速度将威胁到所有工作者的饭碗。
如果技能调整要花费十年时间,情况会怎样?如果调整完后技术又再次变革了怎么办?一旦有人承认工人和组织需要花时间应对技术改进,那么很显然,加速技术改进就会拉大两者间的差距,增加了技术性失业的可能性。
这本书花了很大篇幅论证技术改进正在加速。根据摩尔定律,计算机的运算能力每过18个月就会翻一倍。
一些来自不同技术领域的皮尤问卷受访者也赞同该看法。正如技术咨询师和未来主义者Bryan Alexander所说的:
教育系统无法将自身改造成能帮助毕业生“与机器竞争”的体系。它既不及时,也无法形成规模。自学成才的人将表现出色,因为他们一直在与机器抗衡。但大多数人正在努力学习适应目前的经济模式,然而这种模式将发生根本性的变革。
当然还有人持相反观点,比如波士顿大学的James Bessen,他在近期的哈佛商业评论中就认为新技术最终会促进劳动力需求,即使对受教育程度不高的工人的需求也会上升。许多参与皮尤问卷的专家都表示赞同。互联网先驱,谷歌副总裁Vint Cerf简洁的说道:
“历史上看,技术所创造出的工作多于所消灭的工作,在这个问题上没什么可多想的。总有人要来制造和服务于这些先进设备的。”
经济学家Tyler Cowen把他对这一问题看法总结起来,发布在博客上:
比较优势定律还没有被推翻。机器会抢某些工种的饭碗,但是也会创造出新工作,而且整体产出更高。
但是和摩尔定律不同,比较优势定律(工人会逐渐从事他们最适合的工作)不是一成不变的。对于摩尔定律,Brynjolfsson和McAfee写道:
摩尔定律和热力学或者牛顿经典力学的物理定律极为不同。这些物理定律描述了宇宙是如何运转的,无论我们做什么,它们始终正确,不会受到影响。但是摩尔定律描述的是计算机产业中工程师和科学家的工作,是对他们工作的持续和成果所做的观察。
而比较优势定律不仅仅是观察——它是社会科学发现中最经久不衰的发现之一。它描述了经济体系在更广范围内的运作方式,但是这一定律可能被修改。如果新技术导致经济整体结构发生改变,那么比较优势定律会发生相应变化。
Brynjolfsson和McAfee在他们的书中着重说明了,为什么2004年基于比较优势定律所做的推测无法用来预言如今人力和机器之间的差 别。经济学家Frank Levy和Richard Murnane从理论上认为计算机将取代人类进行计算和基于规则的工作,而人类需要进行图像识别(比如驾驶)和沟通交流的工作。但如今,自动驾驶车辆已经 上路,而每台智能手机都已经搭载了语音识别功能。
和我们预测的不同,机器比人类更能胜任的事情会越来越多。那些我们觉得不会被机器代替的工作可能被取代,而我们担心被取代的工作可能反而更安全。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21