大数据时代,再不努力,小心被机器人枪了饭碗,专家们对于未来的情况存在意见分歧。这可能看上去挺正常,但如果皮尤研究中心(Pew)进行的一项关于机器人替代劳动力的新调查得出如此结论,那就意义重大了。关于“机器人抢占工作岗位”的所有讨论中,2551名受访专家在下列问题上意见分歧巨大。
到2025年,被网络化、自动化的人工智能应用和机器人设备所替代的工作岗位数量会超过它们所创造出来的岗位数量吗?
可能最明显的一个关键结论是,不管预言家们在什么时候声称哪些工作将会自动化、哪些不会,人们总是半信半疑。这类的研究的价值在于能够帮助我们思考自动化设备将在社会中扮演什么角色,但事实是我们还不知道哪些工作在什么时候会被自动化,也不知道有多少这样的工作。
有人担心会被机器取代,对他们来说,专家们有意见分歧似乎是一种安慰——不幸的是,事实绝非如此简单。
相反,第二个关键结论是,对上述问题持怀疑态度的人占了上风。传统观点始终认为,虽然短期内工人会被新技术所替代,但从长期来看就业率并不会降低。
芝加哥大学今年二月曾邀请经济学家参与投票,结果验证了上面这个长久以来的共识。受访者中仅有2%的人认为使用自动化设备会导致美国就业率降低。
在这个背景下,皮尤研究中心所得出对半开的结论更让人头疼。其中的差距一部分可能反映出经济学家总体上保持乐观,但是也释放出信号:这一波新技术带来了前所未有的影响。
过去,对新技术导致失业的担忧还是虚惊一场,原因有两点:一是人们对商品和服务的需求持续上升,二是工人们学习新技术后找到了新工作。相比过去,我 们不再需要那么多人来生产食品,但是我们需要更大的房子,更快的车子,还有更广泛的娱乐需求,这些足以填补并超出原来的需求。农业从业者最终找到了新工 作,生产出满足新需求的产品,社会也继续前进发展。
麻省理工学院的Brynjolfsson和Andrew McAfee在他们的新书《第二次机器时代》中对上述过程提出质疑。他们认为当今的数字化变革的速度将威胁到所有工作者的饭碗。
如果技能调整要花费十年时间,情况会怎样?如果调整完后技术又再次变革了怎么办?一旦有人承认工人和组织需要花时间应对技术改进,那么很显然,加速技术改进就会拉大两者间的差距,增加了技术性失业的可能性。
这本书花了很大篇幅论证技术改进正在加速。根据摩尔定律,计算机的运算能力每过18个月就会翻一倍。
一些来自不同技术领域的皮尤问卷受访者也赞同该看法。正如技术咨询师和未来主义者Bryan Alexander所说的:
教育系统无法将自身改造成能帮助毕业生“与机器竞争”的体系。它既不及时,也无法形成规模。自学成才的人将表现出色,因为他们一直在与机器抗衡。但大多数人正在努力学习适应目前的经济模式,然而这种模式将发生根本性的变革。
当然还有人持相反观点,比如波士顿大学的James Bessen,他在近期的哈佛商业评论中就认为新技术最终会促进劳动力需求,即使对受教育程度不高的工人的需求也会上升。许多参与皮尤问卷的专家都表示赞同。互联网先驱,谷歌副总裁Vint Cerf简洁的说道:
“历史上看,技术所创造出的工作多于所消灭的工作,在这个问题上没什么可多想的。总有人要来制造和服务于这些先进设备的。”
经济学家Tyler Cowen把他对这一问题看法总结起来,发布在博客上:
比较优势定律还没有被推翻。机器会抢某些工种的饭碗,但是也会创造出新工作,而且整体产出更高。
但是和摩尔定律不同,比较优势定律(工人会逐渐从事他们最适合的工作)不是一成不变的。对于摩尔定律,Brynjolfsson和McAfee写道:
摩尔定律和热力学或者牛顿经典力学的物理定律极为不同。这些物理定律描述了宇宙是如何运转的,无论我们做什么,它们始终正确,不会受到影响。但是摩尔定律描述的是计算机产业中工程师和科学家的工作,是对他们工作的持续和成果所做的观察。
而比较优势定律不仅仅是观察——它是社会科学发现中最经久不衰的发现之一。它描述了经济体系在更广范围内的运作方式,但是这一定律可能被修改。如果新技术导致经济整体结构发生改变,那么比较优势定律会发生相应变化。
Brynjolfsson和McAfee在他们的书中着重说明了,为什么2004年基于比较优势定律所做的推测无法用来预言如今人力和机器之间的差 别。经济学家Frank Levy和Richard Murnane从理论上认为计算机将取代人类进行计算和基于规则的工作,而人类需要进行图像识别(比如驾驶)和沟通交流的工作。但如今,自动驾驶车辆已经 上路,而每台智能手机都已经搭载了语音识别功能。
和我们预测的不同,机器比人类更能胜任的事情会越来越多。那些我们觉得不会被机器代替的工作可能被取代,而我们担心被取代的工作可能反而更安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10