2015年的风口是大数据?人工智能?还是SaaS
雷军说,站在台风口上,一头猪都能飞起来。找准市场的潜在热点,你成功的几率就会大增。在这样的市场里更容易招到好的人才、有更多露面的机会,更容易融资,也更容易退出。那么2015年的风口在哪里呢?我们来听听Elad Gil的看法。
初创企业退出的平均时限是 7 年。而站在风口上则可以大大缩短退出时间。1990 年代末,由于互联网热潮的兴起,被收购或 IPO 的时间仅仅是 2、3 年。最快的退出方式是并购。
而要想成功 IPO 通常需要有 5000 万美元的收入,还要有几个季度的盈利。不过如果处在风口的话,对盈利的要求也许就没那么高,甚至还可以宽松一阵子(比方说大数据热潮下 Hortonworks 的 IPO 就是例子)。
历史资料表明,那些挂起的风球有 50% 的概率是假预报。例子包括 1980 年代的第一波人工智能热,2000 年代早期的纳米技术热,以及 2000 年代中期的清洁技术和 2000 年代晚期的地理定位热。
而成功刮起来的风包括社交网络(2000 年代中期—Facebook、Twitter、LinkedIn)以及移动社交(2010 年代早期—WhatsApp、Instagram)。
那么 2015 年可能的风口在哪里呢?
1、飓风—可能催生大型独立公司和众多收购的市场
大数据
所谓的“大数据”可细分为四个领域:
(1)大规模数据处理(Hadoop、Spark 等)
(2)智能数据。如分析性工具获数据科学家使用的工具。
(3)数据中心基础设施(有时归为“大数据”)。如 Mesos(及 Mesosphere)。
(4)垂直数据应用(如针对医保索赔的数据存储和分析)
这个市场会创造出独立上市公司,也会产生大量收购。潜在的收割者包括传统的企业巨头(HP、IBM 等),以及该领域有流通股或市值很大的早期公司(如 Cloudera,、Hortonworks)等。此外,医疗保健方面(及其他 2、3 个关键领域)的垂直型数据公司可能会被更加专业的收购者收购(如 UnitedHealth)。
SaaS(软件即服务—含API/开发者工具)
如最近一些公司(Zenefits 和 Slack)爆发式增长所表明那样,SaaS 在企业协作、人力资源管理等方面还有着非常多的机会。
这个领域未来几年内每年会冒出 1、2 家非常大的公司(或退出)不足为奇。关键是找到差异化的有机分发模式(Slack)或业务模式(Zenefits)。
为了避免市场过于细化,此处将 API/ 开发者工具也归为一类。把许多服务做成 API 是行得通的,因为传统上其执行方式过于笨重。Stripe 和 Twilio 就是这类趋势的两个典范,Checkr.io 则是更近一点的例子。
基因组技术
基因组学尚未进入主流炒作周期。但由于市场发生的根本性转变,到了 2015 末 2016 初有可能会成为投资热点。这可能会催生大片的未来投资,也可能产生 1 亿至数十亿美元的退出。这一波基因组浪潮可能会推出独立的基因组软件公司(IBM、Oracle、Google、Illumina 等是可能的买家),也会出现更多的传统以生物学为中心的基因组学公司(医药与传统生物科技公司为买家)。这个领域会诞生少量大型的上市公司。
2、狂风—会有许多收购但是否会出独立公司不太清楚
人工智能(AI)
有两类 AI 公司:
(1) 开发通用型 AI 或“一般 AI 平台”的公司
(2) 应用 AI 解决非常专门的问题或客户需求的公司(如网页的机器翻译或筛选病例样本)
第一类公司会被 Google、Facebook 等少数公司以人才收购的方式收购掉。第二类公司可能会诞生少量大型的独立公司。我更看好第二类,因为此类公司真正创造价值。不过,如果你主要对快速退出感 兴趣的话,第一类公司会卖得更快,1 到 4 年就能以很好的估值卖给 Google 等试图囤积机器学习人才的公司。
物联网(IoT)
物联网是对“消费电子电器”进行重新的性感包装,是笨重的老式家庭设备的现代化外加软件和 API,从而实现无缝的互操作以及对数据的泛化记录和使用。
现在传统的消费电子电器令我想起 iPhone 之前的摩托罗拉 Razr,很棒的工业设计,但是没有真正的软件可用。
从退出角度来看,Google、苹果、三星、飞利浦、通用电器等都对有助于加速自身在此市场努力的这方面收购感兴趣。预期该市场会出现更多的小型和大型(5 亿美元以上)退出。但是 Nest 被收购之后哪些公司会成为长期可持续的上市公司尚不明朗。
安全
这个市场的破解更加棘手,但是预期 2015 年会出现更多的安全初创企业。企业端对安全产品的购买需求不断增长。但这个领域的进入门槛也会更高,因为它既需要强劲的销售渠道,又要有差异化的产品,从 而会压制市场的总体势头。会有少量初创企业实现中小型(数亿美元)退出,但该行业规模会受限于销售瓶颈(CIO 只会向少量供应商购买安全软件,但是太多的新型初创企业把关注点集中在“功能”而非全面解决方案上)。
3、轮盘赌—二元化市场,一将功成万骨枯
共享经济与按需经济
劳动力的分布或资源共享将继续成为创业热点。但是大多数初创企业都会失败,不过也会有少数取得巨大成功。正如 Facebook、Twitter、LinkedIn 成为第一波社交网络潮的巨头一样,AirBnB、Uber、Lyft、Instacart 是这一波共享经济潮的巨头(从市值看)。
类似地,正如有人(WhatsApp、Pinterest、Instagram)在第二波社交网络潮杀出血路一样,共享经济 / 劳动力分配还会诞生几家巨头,但大部分都将失败。
一句话,一将功成万骨枯。太多创业者都想做成某个微型市场的“Uber”。关键是要找出如何拿下现有的大市场的办法(如 Uber 和交通),或者用一个简单的用户案例和产品急剧扩张一个现有的市场(还是 Uber)。这种玩家一旦赢了就是大胜,因为他们颠覆了整个市场。
4、短暂困难时期
比特币
从长期来看,加密货币和块环链是是值得看好的。但是我怀疑现在的许多公司能否成功。需要有若干更大的结构性事件发生才能让比特币受到广泛采用。留给 现有的比特币公司的时间窗口不多了。能盈利(或现金充足)的比特币公司也许能熬到这一转变的发生(就像 AOL 等到互联网真正兴起一样),但许多公司烧钱速度太快了,很可能要失败。不过一旦公司做得足够成功,就会有大量潜在买家看上(Google、微软、eBay 及整个金融体系)。
随着市场逐步走向成熟,未来几年预计会出现加密货币公司的大量扩张,但最终会优胜劣汰。比特币可能会有几年的苦日子,时不时也会有 1、2 单大型的让人误入歧途的退出。不过这之后就会有加密货币公司的爆发,足以令现在的趋势相形见拙。所以我长期是极其看好这一领域的,但是会对其短期情况感到 担忧。
软件投资者对生物技术的投资
除了基因组以外,我还看到有越来越多的投资者投资传统的生物科技公司。基因组技术兴起的原因很明显,因为成本的大幅下降。但传统生物科技并没有享受 到市场的这场大转变。个人观点是这个市场会成为技术投资者的滑铁卢,因为他们误解了这个行业的结构(监管问题、知识产权问题等),且对于潜在的市场也没有 很好的嗅觉。尽管技术投资者未来几年在生物科技领域未必能做好,但是我认为少数人还是会大笔投钱进去的(类似于 2000 年代早期清洁技术的惨败)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02