大数据带来大机会 运营商需关注四大课题
随着网业分离的加速实施以及OTT厂商和虚拟运营商的逐渐崛起,电信运营商正逐步沦为“流量管道”,运营商的语音、短信等传统业务受到前所未有的冲击。
有专家认为,改变当前专注于粗放式的用户规模增长,寻找更加精细化的盈利新方式来服务客户,挖掘新兴业务的市场价值,以及降低IT系统建设成本和培育内部系统自生能力是运营商在发展转型阶段的重要课题。
支撑精细化运营,全面提升传统电信服务水平
据悉,目前我国的移动业务渗透率已经接近90%,依靠新增用户已经无法长期支撑运营商收入的稳步增长。虽然4G建设力度增大使得中国移动和中国联通的新增移动用户数出现正增长,但是中国电信上半年的新增移动用户数连续数月出现负增长。同时国资委向三大运营商下发通知,要求在未来三年内,连续每年降低20%的营销费用。这样使得运营商的终端补贴策略被迫进行重大调整,放缓用户增长速度。利用数据资源对存量用户进行价值深挖、提升ARPU,降低经营成本,调整收益结构,才是运营商进行用户维系、价值提升的利器。
存量用户维系的前提在于对用户群体的准确分类。以往用户细分的数据来源是业务支撑系统(Business Support System, BSS)的用户消费习惯和消费特征数据。这些数据可以支撑处于成长型或者稳定型的用户维系工作,但当用户进入到波动或者离网阶段,营销侧数据无法展示深层次的用户业务数据。在大数据挖掘技术的带动下,运营商通过整合用户访问记录、位置信息、终端信息、信令监控等网络侧数据,强化营销侧数据和网络侧数据的关联关系。数据分析部门通过构建离网用户数据模型,预判潜在离网用户,加强对VAP (Very Annoying Person)用户的预防式管理,通过主动关怀降低用户离网预期。
“在面对成长型或者稳定型的用户时,运营商同样可通过强化网络侧数据挖掘以对用户价值进行深层次刻画,根据分析结果对用户进行正确的聚类分群以寻找潜在高价值客户。对不同分类的用户制定有针对性的营销计划,为不同用户群体提供其喜爱的产品组合,以实现分客户群的精准营销。”赛迪顾问通信产业研究中心分析师杨光建议。
加快“去电信化”进程,挖掘新兴业务的市场价值
当前在互联网浪潮的冲击下,电信运营商已经认识到基础电信业务市场将持续低迷,未来业务的增长点主要由增值电信业务带来,“去电信化”的发展思路成为运营商转型调整的主要手段。但是“去电信化”并不意味着“互联网化”,运营商在基础网络上的优势意味着未来发展支柱依然是为其带来丰厚用户群体的管道。即使在网业分离的趋势背景下,运营商将继续以管道为主,依托管道中的流量信息,发展增值业务,延伸产业链条向个性化定制化发展,向信息服务领域延伸。
大数据正是迎合当今发展态势,成为加快运营商“去电信化”的利器之一。以集客用户为例,传统上的运营商集客业务大致分为三类,即基础业务、行业应用和行业解决方案。在互联网时代,集客用户的营销策略制定很大程度上取决于终端用户信息的分析程度。但由于集客用户只专注所在行业领域,缺乏宏观数据视角。因此,运营商在网络资源方面的优势可以为集客用户提供更加完善的IT解决方案。通过定制化报表分析等手段,指出用户发展现状和未来发展趋势,支撑用户进行科学决策,同时为运营商预埋商业机会,进一步推出定制化服务产品,实现精细化运营。
打破烟囱式系统架构,降低IT系统建设成本
据了解,经过多年的建设,电信运营商已经建成了完善的IT支撑系统,形成了从集团公司到各省级公司的两级支撑模式。在支撑系统发展之初,由于业务和数据量较少,运营商普遍采用烟囱式架构。目前虽然各系统之间相互独立,各自管理,但却造成了大量的“数据孤岛”,而且由于数据模型和系统入口缺乏统一规划,软硬件资源共享度低。
随着大数据的到来,系统数据共享和综合应用将成为大数据产业链的发展基础。运营商的IT支撑系统也面临向集中化、标准化和服务化的方向发展。整合BSS系统、运营支撑系统(Operation Support System, OSS)等多系统数据,构建数据分散采集、独立存储、集中应用的IT系统,实现支撑系统的集中化和数据模型的标准化,推动集约化的运维体系和端到端服务体系的建立,将有效促进网络质量和运行维护效率提升。
推动运维部门职能转变,培育内部系统自生能力
在大数据概念来临之前,运营商的经营决策通常依靠BSS系统支撑。BSS系统内的用户营账信息、计费数据等内容能为决策者提供决策分析支持。大数据的到来让运营商意识到网络侧数据将成为价值蓝海,OSS系统内的网络运行和监控数据隐含着业务质量与用户感知的真实情况。
对此,建议运维部门可通过对现有组织、流程、指标和系统多维度的优化调整,建立面向用户感知的运维综合评估体系。运维部门配合市场部门将用户业务质量监控纳入日常工作,将客户服务和市场支撑意识真正融入运维工作,支撑市场部门营销活动。如此,运维部门将从被动响应走向主动运维,从而实现运维部门从网络运营中心(Network Operation Center, NOC)向业务运营中心(Service Operation Center, SOC)的转型。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20