大数据的难解悖论:隐私与货币化何以两全?
人生的乐趣在于不确定性。如果大数据作为一种技术,(数据分析师)在未来统治了人们的工作和生活,那么我们每个人将都是赤身裸体的连皮肤可能都要是失去了!我们将进入一个确定的、可预测的世界。这是我在昨天参加完百度BIG Talk第三期《大数据开启大未来》的科技对话活动之后,最为直接的想法。来自美国的彭特兰教授是这次对话的灵魂人物,此君名声在外,不只是因为他自己自 身是MIT媒体实验室的负责人,在大数据领域属于一流的学者,他的学生也都是人中翘楚,其中就包括谷歌眼镜的发明人。
去之前,稍微做了点功课。因为我始终对大数据技术那种宣称的无所不能持有怀疑和谨慎的态度。因为我认为过度的技术浸入人类的生活和工作,并非完全利 好。尤其可穿戴产品,人类的所思所想所行,都变得越来越透明。以至于很多商人在欢呼,传统的消费者行为学理论终于可以寿终正寝,在他们看来,作为消费者的 我们不再是黑盒子。
因此,我比较关注彭特兰教授有关隐私方面的演讲。因为在大数据统治的数字化社会,我并不认为做一名数字透明化的顾客会是多么幸福的事情。
彭特兰教授在演讲中提到的一个观点,我认为值得整个社会深思,他说我们不应该把个人的数据交给一个以盈利为目的的商业公司。在彭特兰教授的观点中,他认为作为个人而言,在大数据时代,应该具有四种权力:
1)被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集
2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意
3)审核:在这里主要是指政府法律机构负责审核
4)撤销权:个人随时可以销毁自己的个人数据资产。
通俗的说,就是彭特兰教授称之为“数据上的新决议”三原则:你有权利拥有你的数据、你有权利掌握数据的使用、你有权利摧毁或者贡献你的数据。
所以在他的解决方案中,他提出了一个可信网络的概念,借用的是SWIFT(环球银行电信协会)在全球银行间建设的银行间通信和实时清算系统。同时, 他还提出了一个“开放个人数据商店”的模型,"数据分析师"在这个模型中,这是一个唯一的存储个人数据的地方,在面对外部访问请求的时候,给出的最终答案,而不是数据本 身。
当然,运营和管理这样的一个个人数据商店,并非简单和容易的事情,尤其是在全世界范围内统一起来更是几无可能。在这里面既涉及到各国政府管理和服务 本国公民的问题,也涉及到全球的国际公司巨头们的巨大商业利益问题。所以笔者对彭特兰教授的这个开放个人数据商店能否真正解决个人的数据隐私保护持有保留态度。
教授的理想是个人的数据资产不能交给商业公司。
但是冷酷的现实则是,除了商业公司对我们的个人数据资产抱有浓厚的兴趣之外,恐怕很难找到一个跳出五行外不在佛门中的人和机构,对此持有持续的兴趣和动力。(当然,政府机构也对此抱有极强的兴趣,但是那是另外一回事)
所以对于个人而言,更为现实的问题,则是如何合理的货币化自己的个人数据资产的问题。这一点,彭特兰教授在演讲中,也有提及。他指出,建立一种机制,鼓励人们分享和贡献数据,既能给自己,也能给他人和整个社会带来好处。
对此,我深表同意。比如如果每个司机人都愿意实时的分享自己驾驶车辆的速度、位置、刹车、加速的情况,这样整个城市的路网,都实现了动态的监控和运营,或许对于改善所有司机的出行效率都有好处。
但是重要的问题是,要有足够的经济激励,刺激个人在信任安全可靠的前提下,有意愿分享自己的数据。显然,有机构或者组织愿意直接出资购买个人的这些数据是一种最为直接的商业模式,但是在现实生活中,第三方付费的模式则更为普遍。
不过有次带来的新问题则是,如果人们知道自己的数据能够给自己带来收益,则可能会影响其有意识的偏离正常的行为模式,从而使得数据的真实性又产生新的问题。这一点,其实在目前互联网世界中,第三方付费的商业模式中,案例比比皆是,虚假繁荣的数据由利益而生。
不过,有激励的机制,显然整体绩效要高于没有激励的机制,这一点,我认为是大数据时代,如果向获得完整和真实的数据,所必须考虑的一点。
目前来了,大数据的出现还主要是为了提高生产力,提高营销的效果,改善我们的交通、环境、健康、城市的境况。但是随着生物科技、信息通信技术的发 展,物联网、互联网的融合发展,我们的世界或许将不可避免的进入一个“全数据化”的世界——在这样的世界,任何不可数据化的东西,都将与不存在一样。
在这样的世界,将是由大数据统治的世界,每一个人都是一串二进制编码,透明而简单,一切都是确定的,都是可预测的,都是按部就班的,你喜欢吗?反正我不喜欢,没有不确定性的人生能有多大意思呢?数据分析师
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21