智能交通管理分析大数据加速车联网进程
近年来我国汽车数量爆发式增长,交通问题也越来越明显:我国15座城市交通拥堵日均损失10亿元,我国每年交通事故50万起、因交通事故死亡人数超10万人。城市拥堵问题已经成为制约城市未来发展和整体运行效率的最主要问题之一,极大影响了我国的城镇化过程。造成这一问题的原因一方面来自于我国地少人多的现实情况,城市有限的物理容纳能力同机动车数量高速增长相矛盾,另一方面来自于城市交通管理的落后造成交通资源的错配。西方国家在上世纪九十年代提出智能交通(ITS)的方法,通过信息技术手段将人、车和路三者有机地联系在一起,提高路的使用效率和出行者的通行效率。智能交通的技术逐步被引入国内,成为解决我国交通问题的重要突破口。
智能交通管理内容
智能交通的要旨是提升交通系统的现代化管理水平和交通系统的运营服务水平,促进交通的可持续发展。究其内涵,包括了以下的内容:
1、智能化交通管理。智能交通为交通管理提供了高效、科学的现代化管理手段,在交通管理和交通运营领域,综合应用各种现代科技手段,构建现代化的交通管理系统,使交通管理和运营更为高效。涉及:道路交通监视系统,卡口车辆识别系统,道路流量测试系统,交通违法行为自动识别取证系统,城市交通智能引导系统等。
2、智能化交通服务。交通是社会服务系统,智能交通必须面向社会、服务公众,通过各种智能化的手段,为社会公众提供良好的服务。涉及:城市交通咨询服务中心,交通提示和咨询,交通电台,交通违法行为自动提示和查询。
3、基于智能交通的交通安全保障体系的建设和交通的可持续发展。智能交通通过人、车、路的协同管理,应显着提升交通安全的保障水平;智能交通的发展将有助于建设节能、环保、可持续发展的交通体系。
大数据助力智能交通发展
我们早已生活在数字生活时代,用数据说话是数字化时代的特征,互联网的一个重要的贡献是使数据在线,在线数据存在着局限性,特别是人类日常生活的数据,移动互联网的出现使得这类数据更容易被收集。移动互联网和云计算等信息技术的发展又催生了大数据(BigData)时代的到来。
由于通过对数据进行专业性分析所带来的巨大价值是无限的,大数据成为世界各国政策层面鼎力推动的战略计划,社会各界也刮起了大数据的旋风,围绕大数据的“入口卡位”之战也激烈地上演着,搜索、社交、支付等等都成了必争之地,目前这些数据要塞都算是被行业巨头所把守,百度占据着web数据,阿里占据着电商数据,腾讯占据着社交数据,具有短期不可替代性,而且能形成自己的行业壁垒,如淘宝拒绝百度扒数据,所以搜索专家百度只好痛失电商搜索这个吸金领域。
汽车作为未来最大的一个移动终端,比手机还要强大的衍生功能,而且车联网的产业链够长够深,使得车联网成为大数据的集中体现,可谓是大数据的一个缩影。互联网企业早已在大数据武装下闯入汽车领域抢食,众所周知,Google在无人驾驶汽车领域拔得头筹,正是基于大数据的采集与分析,微软给福特全新开发车载嵌入式系统,谷歌也不遗余力的和奥迪合作,而iOS6也开始发力汽车领域。
当前,在国内互联网竞争的开放程度下,想要在大小巨头的产品版图夹缝中再打造一个入口级产品,那是难乎其难的,但是可以掌控的数据新蓝海并不是没有,因为整个世界时刻都在变化,只要有变化,就有新数据诞生。只不过,大部分数据尚处于线下,如何成功地将“线下数据”转变为“线上数据”是关键,这样才能形成自己的数据壁垒,释放出大数据的真正价值,如早期的大众点评网就是通过扫街模式积累大量餐馆和菜品数据,而逐渐形成了一个在线私有数据体系。
在大数据时代的背景下,车机作为车联网的一个小分支,要想开辟自己的新蓝海而成功突围,就要想法设法建立自己的数据壁垒:
开发自有特色的硬件应是一个方向,采用软硬件结合的方式,辅以互联网的思维去运作,最终会建立庞大的数据体系,在这个体系里打通另外一个是打通海量、异构的、持续更新的用户级数据;
另一个方向是打通跨行业数据,国内互联网公司对于跨行跨领域的数据重视程度相对较低,而数据具有“外部价值”的,就像汽车厂商的自动制动数据结合LBS数据则会揭示公共交通路段的安全性。
再者,服务内容的精准性如果单纯靠服务提供商的力量,花费巨大的人力财力和时间也不一定取得最好效果,车机传统的观念也只是提供导航和娱乐,若以社区互动的形式,则能快速采集到相应的数据,由此也可以衍生出很多增值服务,提升用户体验感,增强用户黏性。
实际上在在数据分析、加工、传播等环节,名目繁多的App都充满了商机。在大数据时代,App仍具有长尾特征,云存储的海量数据和大数据的分析技术也使得对消费者的实时和极端的细分有了成本效率极高的可能。车机厂商务要对用户群体进行细分,甚至要时刻以“个人”为中心,将个人的相关信息进行精确描述,在保护隐私的前提下进行智能化和个性化的服务匹配,这也是WEB2.0革命的自然深化和扩展。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21