现在几乎所以公司的数据都可以api给你,而python的数据处理能力强大且方便。加之在machine learning的很多算法上,python也独俏一方。另外,它的简明方便迅速迭代开发,15分钟写完个算法就可以看效果了。
除此之外,py还有点酷酷的感觉。任何程序拿Matlab和c++都是可以写的,不过我真没认识过哪个愿意自己把自己扔那个不酷的框框里。
对不规则输入的处理也给python一个巨大的优势。通常来说,在我现在日常的工作里,所有的数据都是以纯文本但是非格式的形式存储的(raw text, unstructured data)。问题在于,这些文本不可以直接当作各种算法的输入,你需要
在这些时候,python可谓是神器。这里做的1-4都可以直接在scikit-learn里面找到对应的工具,而且,即使是要自己写一个定制的算法处理某些特殊需求,也就是一百行代码的事情。
简而言之,对于数据科学面临的挑战,python可以让你短平快地解决手中的问题,而不是担心太多实现细节。
2)学好统计学习
略拗口。统计学习的概念就是“统计机器学习方法”。
统计和计算机科学前几十年互相平行着,互相造出了对方造出的一系列工具,算法。但是直到最近人们开始注意到,计算机科学家所谓的机器学习其实就是统计里面的prediction而已。因此这两个学科又开始重新融合。
为什么统计学习很重要?
因为,纯粹的机器学习讲究算法预测能力和实现,但是统计一直就强调“可解释性”。比如说,针对今天微博股票发行就上升20%,你把你的两个预测股票上涨还是下跌的model套在新浪的例子上,然后给你的上司看。
Model-1有99%的预测能力,也就是99%的情况下它预测对,但是Model-2有95%,不过它有例外的一个附加属性——可以告诉你为什么这个股票上涨或者下跌。
试问,你的上司会先哪个?问问你自己会选哪个?
显然是后者。因为前者虽然有很强的预测力(机器学习),但是没有解释能力(统计解释)。
而作为一个数据科学家,80%的时间你是需要跟客户,团队或者上司解释为什么A可行B不可行。如果你告诉他们,“我现在的神经网络就是能有那么好的预测力可是我根本就没法解释上来”,那么,没有人会愿意相信你。
具体一些,怎么样学习统计学习?
注意,以上的书搜一下几乎全可以在网上搜到别人传的pdf。有条件的同学可以买一下纸制版来读,体验更好并且可以支持一下作者。所有的书我都买了纸制版,但是我知道在国内要买本书有多不方便(以及原版书多贵)。
读完以上的书是个长期过程。但是大概读了一遍之后,我个人觉得是非常值得的。如果你只是知道怎么用一些软件包,那么你一定成不了一个合格的data scientist。因为只要问题稍加变化,你就不知道怎么解决了。
如果你感觉自己是一个二吊子数据科学家(我也是)那么问一下下面几个问题,如果有2个答不上来,那么你就跟我一样,真的还是二吊子而已,继续学习吧。
如果你刚开始入门,没有关系,回答不出来这些问题很正常。如果你是一个二吊子,体会一下,为什么你跟一流的data scientist还有些差距——因为你不了解每个算法是怎么工作,当你想要把你的问题用那个算法解决的时候,面对无数的细节,你就无从下手了。
说个题外话,我很欣赏一个叫Jiro的寿司店,它的店长在(东京?)一个最不起眼的地铁站开了一家全世界最贵的餐馆,预订要提前3个月。怎么做到的?70年如一日练习如何做寿司。70年!除了丧娶之外的假期,店长每天必到,8个小时工作以外继续练习寿司做法。
其实学数据科学也一样,沉下心来,练习匠艺。
3)学习数据处理
这一步不必独立于2)来进行。显然,你在读这些书的时候会开始碰到各种算法,而且这里的书里也会提到各种数据。但是这个年代最不值钱的就是数据了(拜托,为什么还要用80年代的“加州房价数据”?),值钱的是数据分析过后提供给决策的价值。那么与其纠结在这么悲剧的80年代数据集上,为什么不自己搜集一些呢?
如上的过程不是一日之功,尤其刚刚开始入门的时候。慢慢来,耐心大于进度。
4)变成全能工程师(full stack engineer)
在公司环境下,作为一个新入职的新手,你不可能有优待让你在需要写一个数据可视化的时候,找到一个同事来给你做。需要写把数据存到数据库的时候,找另一个同事来给你做。
况且即使你有这个条件,这样频繁切换上下文会浪费更多时间。比如你让同事早上给你塞一下数据到数据库,但是下午他才给你做好。或者你需要很长时间给他解释,逻辑是什么,存的方式是什么。
最好的变法,是把你自己武装成一个全能工作师。你不需要成为各方面的专家,但是你一定需要各方面都了解一点,查一下文档可以上手就用。
4)读,读,读!
除了闭门造车,你还需要知道其它数据科学家在做些啥。涌现的各种新的技术,新的想法和新的人,你都需要跟他们交流,扩大知识面,以便更好应对新的工作挑战。
通常,非常厉害的数据科学家都会把自己的blog放到网上供大家参观膜拜。我推荐一些我常看的。另外,学术圈里也有很多厉害的数据科学家,不必怕看论文,看了几篇之后,你就会觉得:哈!我也能想到这个!
读blog的一个好处是,如果你跟他们交流甚欢,甚至于你可以从他们那里要一个实习来做!
betaworks首席数据科学家,Gilad Lotan的博客, Gilad Lotan
Hilary Mason,bitly首席科学家,纽约地区人尽皆知的数据科学家:hilarymason.com
在它们这里看够了之后,你会发现还有很多值得看的blog(他们会在文章里面引用其它文章的内容),这样滚雪球似的,你可以有够多的东西早上上班的路上读了:)
5)要不要上个研究生课程?
对于是不是非要去上个研究生(尤其要不要到美国上),我觉得不是特别有必要。如果你收到了几个著名大学数据科学方向的录取,那开开心心地来,你会学到不少东西。但是如果没有的话,也不必纠结。我曾有幸上过或者旁听过美国这里一些顶级名校的课程,我感觉它的作用仍然是把你领进门,以及给你一个能跟世界上最聪明的人一个交流机会(我指那些教授)。除此之外,修行都是回家在寝室进行的。然而现在世界上最好的课程都摆在你的面前,为什么还要舍近求远呢。
【1】Introduction to Probability and Statistics
【2】Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009. 免费版
【3】Bishop, Christopher M. Pattern recognition and machine learning. Vol. 1. New York: springer, 2006.
【4】Introduction to Statistical Learning 免费版
【5】Wasserman, Larry. All of statistics: a concise course in statistical inference. Springer, 2004.
【6】d3js.org/
【7】.highcharts.com/
【8】Coursera.org
【9】flask.pocoo.org/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10