CDA Level Ⅱ:建模分析师。两年以上数据分析岗位工作经验,或通过CDA Level Ⅰ认证半年以上。在政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。在Level Ⅰ的基础之上深入掌握高级多元统计方法,并且拓展时间序列分析和主要数据挖掘的理论知识与业界运用;能够熟练使用SAS、R、Matlab和SPSS中至少一个专业统计软件实现相关算法;熟悉使用SQL访问企业级数据库;具有按照数据挖掘标准流程进行项目需求分析、数据验证、建模与模型评估的能力。
级别 |
Level II |
理论 |
统计学、概率论和数理统计、多元统计分析、时间序列、数据挖掘(DM) |
软件 |
必要:EXCEL、SQL、SAS/SPSS 可选:Python、R、MATLAB;SQL等(/表示“或”) |
分析方法要求 |
除掌握基本数据处理及分析方法以外,还应掌握高级数据分析及数据挖掘方法(多元线性回归法,生存分析法,神经网络,决策树,判别分析法,主成分分析法,因子分析法,典型相关分析,聚类分析法,关联规则,支持向量机,bagging,boosting等)和可视化技术。 |
业务分析能力 |
至少在客户关系管理、管理会计、信用风险管理、人力资源管理等其中一个数据分析的常用领域内具有深入的业务经验,可以将业务目标转化为数据分析目标;熟悉企业内数据的生成过程,可以熟练的访问常见数据库;根据项目需求,以最快捷的方式获取业界最新案例和学界最新研究成果,并且转化为行动方针;可以熟练的提取所需信息,能够从海量数据中搜集并提取信息;根据项目目的,结合业务经验选取最优建模方法。 |
结果展现能力 |
报告体现数据挖掘的整体流程,层层阐述信息的收集、模型的构建、结果的验证和解读,对行业进行评估,优化和决策。 |
CDA Level Ⅱ培训课程大纲
详细大纲
时 程 |
大纲内容 |
第1天 |
主题:顾客关系管理及基础数据挖掘技术 |
企业使用之范围: 说明企业如何利用顾客关系管理来进行营销活动 |
|
理论介绍: 顾客关系管理系统的架构及其组成元素 企业如何利用顾客关系管理系统来进行营销活动 数据挖掘技术的功能分类 数据挖掘技术的绩效增益 数据挖掘技术的产业标准 数据挖掘基本观念与实际应用解说 |
|
SAS EM & SPSS Modeler实务案例操作: Introduction to SAS Enterprise Miner(SAS EM) & IBM SPSS Modeler Getting Started with SAS EM 12.1 & IBM SPSS Modeler 16 Creating a EM Project, Library and Diagram Creating a SPSS Modeler Project |
|
第1天 第2天 |
主题:基础数据挖掘技术 |
企业使用之范围: |
|
理论介绍: 数据挖掘技术的流程-SEMMA vs. CRISP DM 数据前处理(Data Preprocessing)技术 Attribute Selection(字段选择) *Data Integration(数据整合) Data Cleansing(数据清洗): *Wrong Value(错误值), *Outlier(离群值), *Missing Value(遗失值) Attribute Enrichment(字段扩充): *内/外部数据的扩充方法 Data Coding(数据编码): *Data Transformation(数据转换), *Data Reduction(数据精简), *Record Reduction(记录精简), *Attribute Value Reduction(域值精简), *Attribute Reduction(字段精简) |
|
SAS EM & SPSS Modeler实务案例操作: Defining a Data Source Exploring a Data Source * Exploring Source Data * Changing the Explore Window Sampling Defaults * Modifying and Correcting Source Data Managing Wrong Values/Outliers/Missing Values Transforming Inputs Recording Categorical Inputs |
|
第2天 第3天 |
主题:进阶数据挖掘技术 |
企业使用之范围: 说明企业如何利用关键变量发掘技术来发掘对项目目标有效之关键变量,以做为数据挖掘之输入变量 |
|
理论介绍: 训练数据与测试数据的产生方法 关键变量(Key Attributes)发掘技术 *卡方检定(Chi-square Test) *t检定及ANOVA检定(t Test & ANOVA Test) *利用决策树(Decision Tree)选择关键变量 |
|
SAS EM & SPSS Modeler实务案例操作: Creating Training & Validation Dataset Variable Selection Using Partial Least Squares for Input Selection Using the Decision Tree for Input Selection |
|
第3天 |
主题:进阶数据挖掘技术2 |
企业使用之范围: 说明如何利用分类技术之决策树来建立交叉销售(Cross-Selling)模型,以提升公司获利 |
|
理论介绍: 分类之决策树(Decision Tree) |
|
SAS EM & SPSS Modeler实务案例操作: Constructing a Decision Tree Model Optimizing the Complexity of Decision Trees Assessing a Decision Tree Understanding Additional Plots & Tables Automatic Tree Growth |
|
第3天 |
主题:进阶数据挖掘技术3 |
企业使用之范围: 说明企业如何利用分类技术之神经网络、支持向量机及分类多模型整合来建立信用评分(Credit Scoring)模型,以降低公司损失 |
|
理论介绍: 分类之神经网络(Neural Network) 分类之支持向量机(Support Vector Machine) 分类多模型整合(Ensemble)之装袋(Bagging)、增强(Boosting)学习 |
|
SAS EM &SPSS Modeler实务案例操作: Training a Neural Network Selecting Neural Network Inputs Increasing Network Flexibility Using the AutoNeural Tool Constructing a Support Vector Machine Constructing Ensemble Models by Using Bagging and Boosting Techniques Model Comparisons |
|
第4天 |
主题:进阶数据挖掘技术4 |
企业使用之范围: 说明企业如何利用模型评估技术来评估模型的优劣,以作为采用适当模型的准则 |
|
理论介绍: 模型评估(Model Assessment)技术 |
|
SAS EM & SPSS Modeler实务案例操作: Model Fit Statistics: * Comparing Models with Summary Statistics Statistical Graph: * Comparing Models with ROC Charts * Comparing Models with Score Rankings Plots * Adjusting for Separate Sampling Profit Matrix: * Evaluating Model Profit * Viewing Additional Assessments * Optimizing with Profit Internally Scored Data Sets: * Creating a Score Data Source * Scoring with the Score Tool * Exporting a Scored Table Score Code Modules: * Creating a SAS Score Code Module * Creating Other Score Code Modules |
|
第4天 |
主题:进阶数据挖掘技术5 |
企业使用之范围: 说明企业如何利用预测(Prediction)技术之回归树及类神经网络来建立数值预测模型-如预测客户之年收入,以利公司设计营销活动 |
|
理论介绍: 回归树(Regression Tree) |
|
SAS EM & SPSS Modeler实务案例操作: Review and Set the Decision Tree Node Review and Set the Neural Network Node |
|
第4天 |
主题:进阶数据挖掘技术6 |
企业使用之范围: 说明企业如何利用关联及序列分析技术来建立交叉销售(Cross-Selling)及提升销售(Up-Selling)模型,以提升公司获利 |
|
理论介绍: 关联分析(Association Analysis) 序列分析(Sequence Analysis) |
|
SAS EM & SPSS Modeler案例案例操作: Consolidating Categorical Inputs Market Basket Analysis Sequence Analysis |
|
第5天 |
环境搭建与数据转换
|
主体:数据分析环境搭建 1、Python程序安装 2、MySQL数据库安装、配置、建库;
|
|
主题:Python与其它软件之间数据转换 1、Python内部的数据存储类型 2、Python与CSV格式文件; 3、Python与EXCEL格式文件; 4、Python与MySQL; 5、Python与ODBC;
|
|
主题:用R作统计 两变量相关检验(两样本T检验、方差分析、卡方检验、相关检验); 主成分与因子分析; |
|
|
数据挖据完整流程案例 ——Python编程构造银行信用风险模型 |
第6天 |
主题:信用风险建模简介 银行信用风险监管体系与信用风险内部模型 主题:单变量检验与数据清洗 缺失值检验与处理方法 异常值检验与处理方法 解释变量粗筛 双变量关系检验法 数据分箱 |
主题:连续变量压缩技术 变量聚类 分类变量压缩技术 似完整分类数据问题 WOE方法 主题:逻辑回归建模技术 模型选择:逐步法、全子集法 根据经验Logit曲线进行连续变量转换 主题:编程模型评估技术 ROC曲线 K-S曲线 |
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16