大数据融合 将进一步开发物联网潜力
随着联网设备增多,消费者将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路—无缝互联。有了系统的整合,组织,安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
随着洛杉矶CES大会的落幕,局势渐渐明朗:2015年将成为物联网元年。从牙刷可以安排体检到瑜伽垫可以实时分析你的动作,今年的CES大会上,3000多家企业推出了超过2000件新产品。
对于物联网这个概念我们显然已经不陌生了。实际上,Gartner公司预测物联网设备的数量在2020年将增长到250亿。
由于便捷性的驱动和对曾经无法实现技术的迷恋,消费者将持续补充他们的电子产品仓库。随着联网设备增多,他们将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路—无缝互联。
现在可以编程让咖啡机在特定时间制作好咖啡。咖啡机可以和用户的床垫相连,感知到她起床并发送消息到手机上询问今天想要哪种口味的咖啡,未来还会在所用咖啡豆储存量不足时自动从亚马逊订购。
随着智能设备带来指数型增长的用户数据,企业必须重新思考储存、整理、利用它们的方法。实时处理和分析将成为常态,没有到位的基础去处理结构化和非结构化的数据,将落后于人。那么,IT和市场精英们到底该不该在物联网领域占领先机呢?
聚焦数据融合同一性是解锁物联网真正潜力的关键通过尝试将所有数据点的产生从设备回到从用户身份上,企业将能够为用户个人创造出真正个性化定制的体验。这种单个用户身份数据的调和和属性可以让用户的牙刷顺利和她的手机“交流”。
如果没有一个明确的系统适当的来给用户个人记录附加信息,数据只能是碎片式的,本质上是没用的。如果每个设备上获取的数据点都封装在一个独立的库里,用户体验将脱节得越来越严重。
企业保持数据整洁、有序、从连接的第一点到用户身份的附带是最好的方法。这个过程从注册开始。当用户从注册开始,即使是在传统网站注册或是通过社交账户登陆的,用户记录就必须开始。
从这点来说,企业需要记录用户的任何行为。它与用户身份相连接,使设备能够知晓用户偏好并和别的设备进行交流。
例如,如果一个人买了三星手机,他就成了三星生态系统中的一环。如果用户把手机当成智能控制中心来控制智能电视、远程洗衣、通过第三方程序发送文件到无线打印机,用户可以根据第一次登入信息用相同的登录证书来做到这些。
所有数据点都能够聚合和转回用户记录,企业用此来建立唯一的1:1的用户体验。
维护统一数据库
除了确保所有返回的数据点都归于用户记录之外,企业必须确保他们有足够安全的“房子”来存储这些数据。利用动态数据库,超越用户基本属性,使建立精确的客户档案和吸引人的用户体验成为现实,让企业投入巨资创造连接的设备。
一种先进的数据库建立在一个动态模式上,可以很容易以优化的方式地处理大量非结构化的用户数据。当用户确定需要此项业务时,客户数据被自动索引。这些信息在一个有组织、易于浏览的方式中非常有用,使营销人员能够针对用户量身定制,并针对他们行动。
有了系统的整合,组织,安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
毕竟,如果不能共同工作,那数十亿智能设备的目的是什么呢?没有数据融合,物联网只是纸上谈兵。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21