大数据带你玩转O2O_数据分析师
O2O,一个多数人难以一语道明的概念,却成了互联网行业最炙手可热的领域。它的兴起仿若一夜春风来,在餐饮、旅游、教育、医疗、打车等各个行业全线开花。原本线下消费体验的方式,被全面接入线上。而且这种轻模式的发展方式也吸引了大量资源进入。不过要想真正玩转O2O显然没有字面上这么简单,线上线下如何平衡、配合,用户体验怎样把控,这些不仅考验着一家企业的智慧,更使得大数据在O2O领域有了用武之地。
有钱也不能任性
有心人或许不难发现,近期大量的融资事件都与O2O相关,在线旅游、在线医疗、在线教育等等,O2O从来不缺乏资本的青睐。
不过有钱并不意味着能随意任性,在这方面有着太多血淋淋的教训。快的与滴滴在情人节当天宣布合并,虽然不清楚双方喜结连理的真实原因,但有一点毋庸置疑,它们烧了大量投资人的钱,但最终也没有在市场份额上拉开差距。而据此前媒体报道,滴滴打车曾在补贴最高峰时一天烧了一千万美元,试问有几家企业扛得住如此折腾?显然,市场的获取不是依靠野蛮任性地砸钱换来的,O2O行业需要更加精细化的运作方法。
而精细化恰恰是数据的优势所在,在一连串看似零散的数据之中,通过特定的算法,得出更有针对性的运营策略。酒类电商平台酒仙网去年在市场上的亮眼表现,被认为是大数据营销的经典案例。其在第三方数据分析平台99Click的助力下,挖掘用户数据价值,开展私人定制般的推广传播。而后者作为国内领先的大数据营销公司,曾服务过诸如劲酒、酒仙网、法国兴业银行等几百家公司,其负责人早早深刻地意识到,“数据是企业未来营销推广的富矿,谁先占有就意味着拥有了市场拓展的制高点。”
这种精细化的做法已经被越来越多的公司所重视。高校外卖起家的饿了么在拿下3.5亿美元融资后,宣布继续向白领市场挺进,建设自有配送体系。这一决策的背后逻辑也不难发现数据分析的作用。白领市场是一个粘性大、频率高、客单价高的群体,而这类群体的特质能够支撑起自有配送体系的运转。这些对于企业的决策而言是一个相当划算的投入。
精准才是王道
或许多数人还对微信朋友圈的广告记忆尤深,三个不同层次的广告居然在朋友圈引发了刷屏之势,而其背后也能隐约窥见大数据的影子。三个广告面向三类不同的人群,推送的依据是微信收集的用户数据,通过这些数据来判断用户的消费能力,进而推送相对应的广告。然而即使传播广泛,微信朋友圈的广告也有令人诟病之处:有些消费能力强的人收到了可口可乐的广告,而有些消费能力欠佳的群体收到的却是宝马广告。这种尴尬更多地折射出了算法上的精确性不足。
这一点也恰恰是O2O企业,特别是初创企业所担忧的,毕竟他们不是不差钱的大佬,每一分钱都应该尽可能用在刀刃上,粗放的营销分析结论对于它们是一种难以承受之痛。“大数据是提高效率和精确性的有效做法,但其本身并不增加成本,甚至在减少企业营销成本。”以资深“圈内人士”99click的客户为例,在大数据技术的帮助下,其所服务企业可以迅速判断出效果更好的营销途径,节省不必要的营销成本。
精准营销的最明显之处体现在O2O企业不可避免的地推工作上。通常做法是将一个试点城市的成功经验在全国推广,这种传统做法难免会遭遇水土不服。随着大数据的接入,O2O企业的地推工作就可以具体到某一个城市,甚至某一个社区,根据不同地域的习惯以及行为方式,制定不同的策略。好比饿了么给每个城市的运营经理一定额度的定价权,这也是尊重不同地区的差异。当然这还是一种较为粗放的形式。如果运用大数据进行分析,评估各地市场大小、收集用户消费习惯,这些难题都将迎刃而解。关键的是,效率和质量都将有明显提升。
O2O被人们寄予厚望,即将成为下一个风口。但在这个风口之下,大数据绝对是起风的最强有力气压。99Click甚至断言,O2O的高速发展离不开大数据的保驾护航。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21