SPSS syntax“临时”应用技巧_数据分析_大数据
在数据分析的时候我们"数据分析师"经常会碰到这样的问题:我们"数据分析师"计算过程中会有一些变量,这些变量的处理结果都只是中间过渡一下,便于后面的计算和分析;但是要得到分析结果少了这些临时变量又不行,今天这里简单的说说几种常用的spss syntax“临时”应用技巧,算是节后的礼物吧。
一、临时性命令Temporary
有的时候,我们"数据分析师"需要变换已有变量观测值计算相关结果,但又不希望改变原有数据表中的数据。例如,游戏中有个概念叫Arpu,其与游戏的平均在线人数有关,这里我们"数据分析师"知道目前游戏的平均在线人数,预测做市场推广之后游戏平均在线人数大概有5%的增长,利用新的平均在线人数来计算收益,就可以用temporary命令来处理这个5%的问题,而不改变原有数据。下面看看temporary运用的简单示例:
----------------------------------------------------------------
#1 DATA LIST FREE /var1 var2.
#2 BEGIN DATA
#3 1 2
#4 3 4
#5 5 6
#6 7 8
#7 9 10
#8 END DATA.
#9 TEMPORARY.
#10 COMPUTE var1=var1+ 5.
#11 RECODE var2 (1 thru 5=1) (6 thru 10=2).
#12 FREQUENCIES
#13 /VARIABLES=var1 var2
#14 /STATISTICS=MEAN STDDEV MIN MAX.
#15 DESCRIPTIVES
#16 /VARIABLES=var1 var2
#17 /STATISTICS=MEAN STDDEV MIN MAX.
----------------------------------------------------------------
代码解析:
上面的代码利用temporary属性,改变var1和var2的临时值,进而计算var1var2变换后的相关统计量。(注:temporary命令只对其后的一条命令起作用。在这个例子中,temporary只对frequencies起作用,而descriptives命令还是按原始观测值计算)
第1-8行创建一个含有var1、var2的数据集,并给var1输入1、3、5、7、9,var2输入2、4、6、8、10的观测值
第9-11行给var1、var2赋予新的值,但不改变原数据集中var1、var2的观测值
第12-17行则是Frequencies和Descriptives命令,用来描述统计VAR1和VAR2
二、临时变量#VAR
SPSS Syntax语句中所有的临时变量都是以"#"作为前缀,什么是临时变量,"数据分析师"在SPSS中临时变量就是指运算用到,但不在结果和数据集中显现出来的变量。例如:我们要通过A计算C,但A又没办法直接计算,我们"数据分析师"必须借助中间变量B才能达到计算目的,在整个过程中B都没明显的表现出来,那么此时B就可视为临时变量,为了方便大家更好的理解,这里还是用一个简单的例子来说明问题,示例代码如下:
---------------------------------------------------------------
#1 DATA LIST FREE / var1.
#2 BEGIN DATA
#3 1 2 3 4 5
#4 END DATA.
#5 COMPUTE var2=1.
#6 LOOP #i=1 TO var1.
#7 - COMPUTE var2=var2 * #i.
#8 END LOOP.
#9 EXECUTE.
--------------------------------------------------------------
代码解析:
上面的代码利用临时变量i做循环,通过var1计算var2,来完成一个迭代的过程。var1的初始观测值为1、2、3、4、5,var2的初始值为1,临时变量i从1取到5,通过compute命令计算出var2的值。
第1-4行创建含有var1的数据集,var1包含5个观测值
第5行对var2进行初始赋值,产生一列变量名为var2,观测值为1的变量
第6-8行为一个循环结构,循环N次计算var2的值(N为var1的观测值数)
第9行为即时计算命令execute,类似于transform菜单栏中的running pending transforms(快捷键CTRL-G)
三、其他
除了上面说的2种情况外,其他更多的情形则是伴随具体的分析方法产生的,如一次分析的结果作为下一次分析的数据,常见的如距离分析(proximities)的结果作为聚类分析(cluster)的原始数据,又或者是因子分析的结果作为回归分析的数据,都可以采用将数据结果存储为临时文件的形式来方便计算,譬如常用的matrix out和matrix in子命令就能达到如此效果,由于时间关系,这里不再深入说明。 总之,所有的临时性命令都是为了方便计算,有点类似于EXCEL中辅助列的作用。
小贴士:
TEMPORARY常与以下命令一起使用:
1)数据转换命令compute,recode,if和count,以及重复计算命令Do repeat
2)循环结构语句loop和do if
3)格式变换语句print formats,write formats和formats
4) 观测值选择加权语句select if,sample,filter和weight
5)变量声明语句numric,string以及矢量申明语句vector
6) 标签处理相关语句variable labels,value labels和missing values命令
7)文件存储语句Xsave及split file.
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21