智联用大数据加强企业与用户的匹配_数据分析师
数据对任何一家互联网企业都至关重要,一切以数据说话,已经成为未来互联网发展的趋势。如能对数据进行有效利用,细微到优化一个N级页面,宏观到可以为产品的未来发展和运营提供科学的数据参考和指导。
契约一直对数据非常感兴趣,不过还从未接触过关于招聘类产品的数据。招聘类产品的特殊性在于,不但要分析B端数据,还要分析C端,再将二者做出有机的“匹配”,相比其他互联网产品的数据要复杂得多。上周有幸收到邀请,参加国内最大招聘网站智联招聘的媒体见面会,才得以了解智联是如何将数据运用得炉火纯青的。
数据支撑下的“1%的秘密计划”
最近智联做了一个“1%的秘密计划-顶尖企业网络招聘”的活动,精选百家顶尖雇主参与,其中不乏智联最佳雇主的阿里、宝马、星巴克等顶尖企业,旨在“匹配”顶尖企业和高级人才,提前推动了春季招聘旺季热潮。
往年“网络招聘旺季”都在春节后的3、4月份,但是智联这次在春节前的1月底就开始,做出这样的决定,并不是智联单方面要抢个先,而是在分析了数十万家独立雇主和近1亿注册用户的数据后发现,今年的招聘旺季已在春节前的1月开始,所以选择了这个合适的时机来推出。
这也不能说是旺季前置,而是淡季不淡。在C端,往年大多数人都是过完年后找工作,因为他们特别看重年终奖。但是随着机会越来越多,只要能找到合适的职位,很多用户对年终奖已经没那么在意了。在B端,企业很清楚人才的重要性,如果年前不招到合适的人才,年后必然会陷入激烈竞争的困局,就更招不到人才,特别是在一些非常热的行业。
智联这次活动并没有针对所有行业、城市和用户,如果从这三个维度看的话,“顶尖企业网络招聘”活动限定的目标是:
行业,主要集中在6大行业,IT、互联网、房地产、制造业、金融和通信,这个几个行业当下最热门,人才需求异常强烈,而人才有极度稀缺。
城市, 覆盖北京、上海、广州、深圳、杭州、天津、成都等全国7大主要城市,以及其他经济迅速发展的城市及地区。虽然发达城市人才多,但是公司也多,公司之间的人才战已不可避免。
用户,不是针对刚出校门的学生和高端人才,主要是针对白领。 大多数企业不愿意招学生,因为培养周期长、成本高;而高端人才主要是被动求职,这个智联已经交给卓聘去做;而白领机会最好,可以在各种行业和公司之间跳,机会成本很低。
由此可见,智联的“顶尖企业网络招聘活动”无论在时间、行业、城市,还是企业和用户的需求,都是做了严格的数据分析,而不只是临时的头脑发热。 所以与其说是智联提前推动了春季招聘旺季热潮,不如说是淡季变旺季推动了这次网络招聘活动的诞生。
数据加强企业与用户的“匹配”
对于职位质量方面,智联对职位的真实性和职位要求非常高。比如智联最近推出1%的秘密计划,主要是针对工作零到五年的人推出的产品,而对高端人士就不一定有效。智联这就是明显希望能在B端找到最好的企业、最好的职位,再根据用户的需求,对B和C做出精准高效的“匹配”,而不是盲目粗暴的推荐简历。
智联对用户做出调研,从学生到白领再到高端人士,都有不一样的用户洞察。智联对用户进行细分,再根据不同的需求给他们提供最合适的工作和产品。比如智联这次的“1%的秘密计划”大型网络招聘会,就提供了一些职位分类,比如晋升最快的职位、福利非常好的职位、薪资任性的职位等,让每个用户都能迅速匹配到自己想要的职位,大大提高“匹配”的效率。
智联会随时跟踪用户的情况,为用户提供从校园到初入职场再到高端工作者,是职业生涯式的个人发展平台。智联会用不同方式激活用户的简历,激励用户去将简历填写完整和更新。即使部分简历确实出现一段空缺,智联通过数据分析,根据工作经验及空缺年限,也会大概知道此用户的一些基本状况。只有准确把握每个用户的真实属性和需求,才能通过EDM、精准搜索及匹配推荐等方式,直接告诉求职者有某家企业的某个职位适合你,可以去尝试下,是真正的切中到用户的要害,而不是随便发一堆垃圾邮件,让用户自己去繁琐的匹配。
从以上看来,智联其实是一家以数据为驱动的互联网公司典型。据我所知,智联在上市后,以覆盖求职者整个职业生涯为出发点,打造“3的三次方”产品模型,即为学生、白领、高端(专业人士或管理人士),匹配3类产品:测评(我是谁)、网络招聘(我能干什么)、教育培训(我如何进步),并通过线上、线下、无线三个渠道,为职场人的全面发展打造平台。通过对数据分析,对每个B和每个C做出精准服务和“匹配”,从而实现从“简历仓库”到“人才加工厂”的战略转型,为中国人才市场打造一个闭环生态链。另悉,智联招聘即将秘密推出核心在线产品,拭目以待!
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28