运营智能,是大数据应用的终极形式_数据分析师
数据从无到有,从简到繁,从过去的硬件为主再到未来的数据为王,一步步的变化都体现了人类对于数据和信息的应用能力在不断加强。而大数据正是人们总结前人经验,站在巨人的肩膀上继续前行的有力工具,人们不断地发掘大数据的价值,也促进了大数据应用的不断发展,那么大数据的终极形式会是怎样呢?
可以说,在过去的20年中,我们只是在谈数据分析的概念,却没有真正进行数据分析的实践应用。但这并不是说公司没有做数据分析;他们做了。可以发现很多的制药公司、银行、保险公司、大型零售行业已经聘请了一些人作为数据分析师,使用数据分析工具已经成为了他们工作的一部分。一旦网络开启,他们便利用自己的数学工具获取网络数据文件,进行整理分析。
然而,直到谷歌出现,我们才真正拥有了一个靠数据分析来驱动的公司。可以不自欺欺人地讲:智能业务方面的创新虽然带动了许多谷歌所做的项目,但数据分析才是真正大量促进这些项目发展和推动创新的源泉。
水煮大数据
“冰冻三尺非一日之寒”,数据变“大”也不是一夜之间完成的,在这之前它只是没有被分析罢了,或者就某种情况来讲,它没有被深入分析。正是易于部署的公共云资源和易于管理的私有云资源,再加上价格低廉的Hadoop堆栈的出现,为数据分析师们创造了对数据集——一个他们之前从未调查研究过的数据形式,进行研究和分析的机会。因为一旦研究可行,便能从数据中挖掘出有价值的知识。
大数据在某种程度上会涉及到大体量数据,高速数据和复杂的结构化数据,普遍的观点还是认为,数据分析在商业中的重要性在增加。虽然不是每一块的知识都需要立即获取和研究,但确实有一部分需要尽快进行。
谈到广阔的商业智能(BI)市场,大家可以看一下Bloor Group通过对业务整理得出的商业智能四点总结:事后处理能力,监察能力,洞察力和远见。前两个是事后处理能力和监察能力,许多公司通过定期报告、仪表盘、OLAP功能和多种方式的数据可视化等形式进行运作,而且都运用地相当不错。公司通过以上方式获取的数据可以开发成新的数据源,利用这些数据可以很容易地提高事后处理能力和监督能力。
大部分的行为经过大数据分析之后会涉及到洞察力和远见(深层分析和预测分析)的领域,这其中一些正在被挖掘的知识需要迅速地付诸实践,而且速度是一个重要因素。
很显然:欺诈行为越容易被察觉,那么欺诈就会越少。网络安全漏洞和在金融市场上的一些风险因素也同样遵循这样的规律。另外,信息(情报)的价值随着时间的增长而衰减,这可能是因为该信息是共享的或者因为其他竞争对手也发现了此类信息。因此,关键不只是挖掘这类信息,还应该尽可能快地将这些信息加以利用。
运营智能势头飞涨
我们相信运营智能即将起飞。一方面,我们看到越来越多的厂商使用这个词来形容自己的技术。不论他们的所从事着怎样的行业,但他们都有一个共同的需求:寻求商业智能能够实时或接近实时地转化为企业的行动。
我们这里所说的商业智能以数据分析或预测分析为主。我们所说的商业行动主要是指:依靠商业智能提供的信息让用户立刻可以执行的行动,或者以提供的信息作为指导可以触发软件自动采取的行动。
按理说,这样的运营智能应用已经存在了相当一段时间。银行业已经基于智能算法自动进行交易多年了。但是一套可直接向企业行为提供决策或者智力支持的软件还是相当新颖的。
运营智能的上升趋势十分明显,并很有可能在几年完成行业的起飞。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28