大数据处理技术_大数据处理技术有哪些_数据分析师
大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。
适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统
中国企业如何应对大数据时代的来临?
国内的企业跟美国比较,有一个很重要的特性就是人口基数的区别,中国消费群体所产生的这种数据量,与国外相比不可同日而语。
SOA管理大数据
我们需要的是以数据为中心的SOA还是以SOA为中心的数据?答案取决于如何处理的SOA-数据关系的三个不同模型来管理大数据、云数据和数据层次结构。在越来越多的虚拟资源中,将这些模型之间所有类型的数据进行最优拟合是SOA所面临的巨大挑战之一。本文详细介绍了每个SOA模型管理数据的优点、选择和选项
SOA的三个数据中心模型分别是数据即服务(DaaS)模型、物理层次结构模型和架构组件模型。
DaaS数据存取的模型 描述了数据是如何提供给SOA组件的。
物理模型 描述了数据是如何存储的以及存储的层次图是如何传送到SOA数据存储器上的。
架构模型 描述了数据、数据管理服务和SOA组件之间的关系。
多数的大数据是非关系型的、非交易型的、非结构化的甚至是未更新的数据。
由于缺乏数据结构因此将其抽象成一个查询服务并非易事,由于数据有多个来源和形式因此很少按序存储,并且定义基础数据的完整性和去重过程是有一些规则的。当作为大数据引入到SOA的应用程序中时,关键是要定义三种模型中的最后一种模型,SOA数据关系中的架构模型。
有两种选择:水平方向和垂直方向。
SOA和各类数据模型
在水平集成数据模型中,数据收集隐蔽于一套抽象的数据服务器,该服务器有一个或多个接口连接到应用程序上,也提供所有的完整性和数据管理功能。组件虽不能直接访问数据,但作为一种即服务形式,就像他们在简单情况下的企业,其数据的要求是纯粹的RDBMS模型。应用程序组件基本上脱离了RDBMS与大数据之间数据管理的差异。尽管由于上述原因这种方法不能创建简单的RDBMS查询模型,但是它至少复制了我们上面提到的简单的RDBMS模型。
垂直集成的数据模型以更多应用程序特定的方式连接到数据服务上,该方式使得客户关系管理、企业资源规划或动态数据认证的应用程序数据很大程度在服务水平上相互分离,这种分离直接涉及到数据基础设施。在某些情况下,这些应用程序或许有可以直接访问存储/数据服务的SOA组件。为了提供更多统一的数据完整性和管理,管理服务器可以作为SOA组件来操作各种数据库系统,以数据库特定的方式执行常见的任务,如去重和完整性检查。这种方法更容易适应于遗留应用和数据结构, 但它在问数据何访方式上会破坏SOA即服务原则,也可能产生数据管理的一致性问题。
SOA和水平数据模型
毫无疑问水平模型更符合SOA原则,因为它更彻底地从SOA组件中抽象出了数据服务。不过,为了使其有效,有必要对非关系型数据库进行抽象定义和处理低效率与抽象有关的流程——SOA架构师知道除非小心的避免此类事情否则这将会成为不可逾越的障碍。
水平的SOA数据策略已经开始应用于适用大数据的抽象数据。解决这个问题最常见的方法是MapReduce,可以应用于Hadoop形式的云构架。Hadoop以及类似的方法可以分发、管理和访问数据,然后集中查询这一分布式信息的相关结果。实际上,SOA组件应将MapReduce和类似数据分析功能作为一种查询功能应用。
处理水平数据库的效率问题
效率问题较为复杂。因为水平数据库模型可能是通过类似大多数SOA流程的信息服务总线来完成的,一个重要的步骤是要确保与该编排相关的开销额度保持在最低程度。这可以帮助减少与SOA相关的数据访问开销,但它不能克服存储系统本身的问题。因为这些存储系统已经通过水平模型脱离了SOA组件,很容易被忽略与延迟和数据传输量相关的问题,特别地,如果数据库是云分布的,那么使用他们就会产生可变的网络延迟。
上述问题的一个解决方案是现代分层存储模式。数据库不是磁盘,而是一组相互连接的高速缓存点,其存储于本地内存中,也可能转向固态硬盘,然后到本地磁盘,最后到云存储。缓存算法处理这些缓存点之间的活动,从而来平衡存储成本(同时也是平衡同步地更新成本)和性能。
对于大数据,它也是经常可以创建适用于大多数分析的汇总数据。例如一个计算不同地点车辆数量的交通遥测应用。这中方法可以产生大量的数据,但是如果汇总数据最后一分钟还存储在内存中,最后一小时存储在闪存中,最后一天存在磁盘上,那么控制应用程序所需的实际时间可以通过快速访问资源得到满足,然而假设分析时我们可以使用一些更便宜、更慢的应用程序是会怎样。
SOA都是抽象的,但当抽象隐藏了底层影响性能和响应时间的复杂性时,这种抽象的危险程度会提高。数据访问也是这样的,因此,SOA架构师需要认真地考虑抽象与性能之间的平衡关系,并为其特定的业务需求优化它
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10