大数据需要什么样的人才_数据分析师培训
云计算喊了很多年,现在可以说市场竞争已经非常激烈了。一个概念从提出,到行业认同,到资源和人才涌入,到可以看得见市场规模化竞争,有很长的路要走,这其中的艰辛,恐怕只有身处其中者才能更深刻的体会。
云计算已经走过了概念阶段,过程中各种新技术层出不穷,各种VM正卖得火热,基于容器的Docker又带来了新的哲学,连Google都开源了基于Docker的分布式容器管理平台Kubernetes。
那么大数据呢?和云计算一样,一百个人对于大数据可能有一百种不同的解读。在我看来,大数据就是要把数据通过互联网的方式收集起来、集中存储、打通数据孤岛,并通过互联网的方式利用到在线业务系统中。从这个角度来说,大数据和云计算是不分家的。云计算为大数据提供分布式的海量存储和大规模计算能力,大数据则可能是云计算未来最大的应用场景。
但是到今天为止,大数据远远还没有找到靠谱的商业模式,而成本却呈指数增长。所以不管是在技术还是商业方面,都处于一种怀着兴奋的焦虑状态,投身其中的人都坚信前景很光明,但现实很残酷。如何度过这个残酷的阶段,奔向光明的未来,还需要更多聪明和有执行力的人才投身其中。
所以,大数据需要的人才,首先得有很强的心力,“板凳要坐十年冷”,虽然不会到十年这么夸张,但三到五年的咬牙坚持恐怕是不可避免的。
技术方面,大数据首先当然需要数据人才,从数据分析、到数据开发、到数据挖掘、到近几年很火的机器学习和深度学习算法,不管有没有大数据这个概念,数据本身是一个隐含丰富信息又包含了大量噪声的金矿,各类围绕数据的技术人才,其价值就类似于挖矿的矿工,淘尽黄沙始终到金。
挖矿当然得有工具,而这些工具也在随着大数据的指数增长而迭代进化。在云计算和大数据时代,不管是存储还是计算工具,都升级到了分布式。所以对于分布式系统的研发人才,大数据也是求饥似渴。
矿挖好了,金子也产出了,但如果不进入流通的经济系统,也就是个闪亮的疙瘩,又不能当饭吃。如何将数据包装成可以流通的产品,让市场都认可它的价值?而互联网时代的产品,基本上可以认为是Web化的产品,所以Web产品涉及到的人才,都是大数据所需要的,即使你认为自己根本不懂数据。CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。CDA数据分析师分为LEVEL ⅠⅡⅢ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。
然后呢?金子找到了,产品也包装好了,怎么让市场认可呢?大数据的商业化,更需要商业模式的探索者。如何建立整个的交易生态,让金子成为这个生态中买卖双方都一致认可价值的一般等价物?这样的人才,是大数据最急缺的人才。只要市场生态起来了,就不愁卖家和买家了,就业机会也会越来越多,矿工们挖矿也会更来劲了,对吧?
矿挖好了,金子也产出了,但如果不进入流通的经济系统,也就是个闪亮的疙瘩,又不能当饭吃。如何将数据包装成可以流通的产品,让市场都认可它的价值?而互联网时代的产品,基本上可以认为是Web化的产品,所以Web产品涉及到的人才,都是大数据所需要的,即使你认为自己根本不懂数据。CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。CDA数据分析师分为LEVEL ⅠⅡⅢ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。
然后呢?金子找到了,产品也包装好了,怎么让市场认可呢?大数据的商业化,更需要商业模式的探索者。如何建立整个的交易生态,让金子成为这个生态中买卖双方都一致认可价值的一般等价物?这样的人才,是大数据最急缺的人才。只要市场生态起来了,就不愁卖家和买家了,就业机会也会越来越多,矿工们挖矿也会更来劲了,对吧?
2014年12月IPO的Hortonworks 2014年营收4600万美元,比上年增长91%,亏损3480万美元。还没有未公开上市的Cloudera也于近期透露了其2014年的财务数据,营收超过1亿美元,增长约100%,新增付费用户数250个,总数达到525个,生态合作伙伴超过1450家。这两家大数据基础技术公司都快达到盈亏平衡点,大数据生态的其他物种也该开始向多样化进化了。2015年可能是大数据的商业化和生态化的元年,你准备好加入这场大数据的盛宴了么?
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21