大数据驱动商业+工业4.0_数据分析师
商业4.0路径:“D世代企业”
IBM认为,D世代企业是大数据分析驱动型企业,可以战略性运用云计算、移动、社交和大数据分析工具,掌握并预测以客户为中心的市场状况和变化趋势,并根据数据洞察生成最佳行动建议,数据贯穿企业研发、生产、营销、服务等管理运作。
商业4.0和工业4.0的到来,与消费者自我意识觉醒及技术进步有着密切的关系。持续丰裕的生活终将带来消费者消费态度的质变,先是品味提升,最终是消费者自我意识的觉醒。而移动互联网、智能手机、可穿戴设备的普及,让基于用户识别和地理定位的服务变得可能。这一切改变了消费者与产品、品牌、厂商、甚至和其他消费者之间的沟通方式。重要的是,通过物联网、移动互联网、开放硬件平台、各种传感器,以及3D打印技术,人类第一次有机会将创造欲发挥到淋漓尽致,通过共创、众包构造自己想要的生活方式,消费者变成了新时代的创客。商业4.0便是创客的时代。
工业4.0,是大数据驱动的智能工业
不过,仅凭创客不可能充分满足商业4.0时代所需的一切供给,实际上更为重要的供给可能来自工业4.0:通过传感器与物联网来联结无生命的生产资料、零组件、生产仪器与设备,以及有生命的生产人员与管理人员,一方面让这些生产材料在生产过程里实时分享彼此之间所处的状态信息,另一方面也允许生产人员和管理人员随时随地介入生产过程,来进行制程变更或量身定制的弹性生产。
从这个视角看,商业4.0是工业4.0在需求面的有益补充。通过对消费者行为的追踪并由此所捕捉的大量消费数据必须利用数据科学进行计算与建模,并自动转化为商业决策与运营模式,然后通过工业4.0,随时动态调整生产流程来因应消费需求的动态变化。麦肯锡全球研究院指出,制造业会从生产机械、供应链管理和商品监控系统等来源收集数字数据,他们本来就是生产和储存数据的“大户”。 早在2010 年时,制造业所新增的数据便将近 2EB(计算机存储单位),如果把这些数据全印在纸上,装在标准尺寸的四门档案柜里,会需要 400 亿个柜子才装得下。
这也与IBM定义的工业4.0的特征不谋而合。在IBM看来,所谓工业4.0,其实就是大数据驱动的智能工业。IBM大中华区副总裁冯国华认为,这是一场由首席执行客户(CEC)推动的,以“D世代企业”(大数据分析驱动型企业)的诞生与发展为标志的,以大数据、云计算、移动、社交等技术为主要驱动手段的工业革命。其中,大数据分析的重要性尤为突出。概括而言,大数据深刻改变了工业企业的生产和决策。
在工业4.0趋势下:工业的信息化水平进一步提升,尤其是“互联化”和智能化的提升。以制造业为例,在其转型升级中,渗透着“互联”和“智能” 两个关键词,可以概括为几个方面:第一,产品智能化;第二,流程的智能化升级;第三,制造业的互联网化。“互联化”和“智能化”的进程,也将产生大量数据,大数据分析和管理将更为重要,也将驱动“互联化”和“智能化”的提升。而IBM以最前沿的CAMSS技术(C是指Cloud云;A是指BigData &Analytics,大数据和分析;M是指Mobility移动;第一个S是指Social社交,第二个S则是指Security安全),将助力中国企业、行业构建大数据能力,助力抓住工业互联网化,与产品和流程智能化的趋势,为“互联化”和“智能化”打下坚实基础,实现转型升级。
CEC是催生“D世代企业”的重要推力之一
当下,我们看到制造业正在经历蜕变式的转型升级,制造业的新形态正在形成,它们开始与互联网企业、服务业携手合作,跨界与融合成为重要趋势,并由此构造出由消费者驱动并深度参与的商业4.0时代。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21