并行算法就是用多台处理机 联合求解问题的方法和步骤,其执行过程是将给定的问题首先分解成若干个尽量相互独立的子问题,然后使用多台计算机同时求解它,从而最终求得原问题的解.
定义
并行算法是并行计算中非常重要的问题。并法研究应该确立一个“理论-设计-实现-应用”的系统方法,形成一个完善的 “架构—算法—编程” 方法论,这样才能保证并行算法不断发展并变得更加实用。
并行算法简介
简单的说,算法就是求解问题的方法和步骤。并行算法,就是在并行机上用很多个处理器联合求解问题的方法和步骤。实际上,在自然界中并行是客观存在的普遍现象,关键问题在于能不能很好的利用。由于人们的思维能力以及思考问题的方法对并行不太习惯,且并行算法理论不成熟,所以总是出现了需求再来研究算法,不具有导向性,同时实现并行算法的并行程序性能较差,往往满足不了人们的需求。并行算法的研究历史可简单归纳为:上世纪70到80年代,并行算法研究处于高潮;到上世纪90年代跌入低谷;目前,又处于研究的热点阶段。现在,人们已经可以自己搭建PC cluster,利用学习到的理论知识来解决实际问题,不再是纸上谈兵,这也为我们提供了新的机遇和挑战。
并行算法的研究内容
(1) 、并行计算模型 并行算法作为一门学科,首先研究的是并行计算模型。并行计算模型是算法设计者与体系结构研究者之间的一个桥梁,是并行算法设计和分析的基础。它屏蔽了并行机之间的差异,从并行机中抽取若干个能反映计算特性的可计算或可测量的参数,并按照模型所定义的计算行为构造成本函数,以此进行算法的复杂度分析。
并行计算模型的第一代是共享存储模型,如SIMD-SM和MIMD-SM的一些计算模型,模型参数主要是CPU的单位计算时间,这样科学家可以忽略一些细节,集中精力设计算法。第二代是分布存储模型。在这个阶段,人们逐渐意识到对并行计算机性能带来影响的不仅仅是CPU,还有通信。因此如何把不同的通信性能抽象成模型参数,是这个阶段的研究重点。第三代是分布共享存储模型,也是我们目前研究所处的阶段。随着网络技术的发展,通信延迟固然还有影响,但对并行带来的影响不再像当年那样重要,注重计算系统的多层次存储特性的影响。
(2)、 设计技术并行算法研究的第二部分是并行算法的设计技术。虽然并行算法研究还不是太成熟,但并行算法的设计依然是有章可循的,例如划分法、分治法、平衡树法、倍增法/指针跳跃法、流水线法破对称法等都是常用的设计并行算法的方法。另外人们还可以根据问题的特性来选择适合的设计方法。
(3) 、并行算法分为多机并行和多线程并行。多机并行,如MPI技术;多线程并行,如OpenMP技术。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21