爱立信:用大数据提升运营商NPS
2015年世界移动通信大会(MWC)期间,爱立信发布了大数据分析套件Expert Analytics 15.0。这套方案可以帮运营商预测NPS,并且提出改进方案。
NPS是目前最流行的客户忠诚度分析指标,用以计量客户向其他人推荐企业业务的可能性。在同一个用户调查样本中,业务推荐者的比例减去业务贬损者的比例,即为NPS。苹果、飞利浦等公司很早就启动了NPS考核,并将其视为“未来利润”。
对当前的运营商而言,更高的NPS不仅意味着领先于其他运营商,同样也可以在面对OTT冲击时降低用户流失率。
但是,3月3日,爱立信副总裁兼OSS&CEM产品管理主管Shamir Shoham在接受记者采访时表示,目前绝大部分电信运营商的NPS都低于5%,甚至很多为负值。而相比之下,苹果、Google等互联网公司的NPS超过70%。
“运营商的用户忠诚度远不及互联网企业。”Shamir Shoham对记者表示,“5%是很危险的,运营商至少要提升到30%以上。”
运营商的挑战
据Shamir Shoham透露,目前爱立信的大数据分析套件已经在数个运营商网络中得到验证。
其中,中国移动于2015年正式引入NPS(净推荐值)考核指标,启动经营策略转型,试图通过重视客户生命周期管理,培养忠诚客户。
在此之前的2014年8月,中国移动耗时半月在广东、北京等10个省市进行用户满意度调研。在调研报告中,中国移动称其NPS值为39.7%,而4G业务NPS值则为48%,两项NPS数值均远高于行业平均水平。该报告认为网络、自费、服务要素的提升是用户满意度较高的主要原因。
但是,需要指出,该报告只提到了“推荐者”的关注点,对于更受重视的“贬损者”,该报告并未分析原因。
同时需要指出的是,中国移动的此份NPS报告采用了业内最常用的问卷调查方式,这种方式很容易受到调查手段、调查时间、调查样本、客户心态、企业考核指标,甚至活动礼品等多方面的影响,导致这一重要数据失真。
“即便数据可靠,运营商仍然需要去分析影响用户忠诚度的原因和关键要素。”Shamir Shoham认为:运营商需要有效的方法准确判断NPS,并且搞清楚用户为什么不满意,然后才能改进服务体验,“整个流程耗时长、准确率低,这是运营商最大的挑战”。
德瑞咨询首席顾问宋永军在谈及中国移动NPS战略时也曾表示:运营商需要制定清晰的操作方案,比如针对NPS贬损者指标的深入调查分析,确保贬损者背后原因的挖掘;同时考虑将贬损度的调查与满意度调查结合,确保能找准客户感知的“痛点”。
除此之外,如果缺少清晰的操作方案,运营商在执行NPS时很有可能“沉迷于得分”。湖北移动客户服务中心康黎曾撰文指出:“目前使用NPS的企业普遍沉迷于‘得分’本身,而不是关注在驱动‘得分’改善的策略、行动以及由此所影响的客户体验上。”他建议,企业应该充分利用客户标签、大数据技术构建高效的策略。
用大数据改进NPS
运营商希望提高NPS,但却始终没有成熟的分析模型支撑运营商在庞大的用户群、复杂的网络环境中得出精准的结论。
Shamir Shoham表示,爱立信针对这一诉求推出了Expert Analytics 15.0分析套件,其可以在线、随时为运营商生成用户服务报告,并且根据爱立信服务水平指数(SLI)预测NPS,“明确告诉运营商,是哪些因素影响了用户满意度”。
他以欧洲某家运营商的案例介绍说,该运营商在某小区的用户中有25%的高价值用户,爱立信收集并分析这些用户的行为,以及对应的网络要素。比如,在线收集用户观看视频的时间,此时的缓冲、下载速率、以及时延指标。对应网页浏览,则采集网页打开时长;而对于用户通话行为,则采集通话时长、质量、计费等等。
“整个过程不影响用户感知。”Shamir Shoham表示,根据爱立信的分析模型,该运营商的SLI为6.09,通过SLI测算出的NPS也非常低。
Shamir Shoham表示,运营商可以针对SLI提出的问题加以改进,而前文提及的欧洲运营商,通过这套系统使得其高价值用户忠诚度明显提升,NPS超过了30%,“整个过程,运营商都不需要进行问卷调查”。
对于高忠诚度用户,运营商可以进一步开展位置信息、定向广告等业务。“目前我们正在与很多运营商进行这些尝试,很快会公布成果。”Shamir Shoham将此称之为大数据的“货币化”,是运营商通过NPS实现经营转型的下一步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13