商务智能全面迈入大数据时代_数据分析师
IT技术的演进,对传统行业的商业模式产生着颠覆性的冲击,从云计算、大数据到移动技术,都不可阻挡地影响着消费者和企业。时至今日,全球每天要产生25亿GB的数据,超过16亿的社交媒体用户每天发布着海量的信息,到2015年全球信息总量预计会达到8 ZB。如此海量的数据蕴藏着巨大的财富,这是大数据时代的共识,但是如何从中获取有价值的信息,却成为企业成长和变革过程中的困惑。
经过十多年的沉淀与发展,商务智能无疑是将企业内部数据以及与之相关的外部数据转化为决策支持的有效手段,是企业应对大数据时代的重要战略选择,当然,企业对商务智能技术的应用在十几年间发生了很大的变化。在商务智能领域从业17年的吴韶益提到:十五年前的商务智能项目仅仅需求调研就要耗费一年半的时间,三年过去了等项目实施完成,最初的需求却发生了变化;十年前的商务智能产品已经是百花齐放,但各类产品各自为政、各行其是,企业的认同感并不强;五年前的商务智能解决方案逐渐走向成熟,但依然会出现报表结果不正确的情况。在十几年的发展过程中,商务智能产品随着IT技术的演进大浪淘沙,已经逐渐演化为新一代的商务智能解决方案。
新一代的商务智能解决方案具有统一信息框架的特点,同时融汇了当前四大主流的IT趋势:首先是移动应用,如今企业主管们时间都是碎片化的,移动技术的应用可以帮助他们随时随地进行决策,这也是商务智能应用中很重要的一个要素;其次是大数据,大数据对于商务智能应用的重要性不言而喻,大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力;云技术对商务智能应用同样产生重大的影响,无论是私有云还是公有云,都可以提高商务智能获取海量数据的能力,在云环境下,商务智能的共享性也是很重要的优势,同时云技术可以提升商务智能应用的时效性和商务智能系统的开放性;一体机的迅速发展对商务智能应用也产生着积极的意义,软硬一体化的应用将更大程度上提升数据转换、管理和存取等方面的能力。
甲骨文公司中国区商务智能技术总监赵春立介绍,甲骨文面向商务智能领域的新一代解决方案正是顺应了这几大趋势,提供数据储存和信息探索、全面智能分析、部署集成应用一个完整的解决方案。在甲骨文的产品家族中,面向商务智能分析的产品和解决方案包括:Oracle Endeca Information Discovery、Oracle RTD(Real-Time Decision,实时决策分析工具)、Oracle Exalytics商务智能云服务器、Oracle商务智能基础套件以及Oracle BI Applications。
部署灵活是甲骨文商务智能解决方案的一大特色,据赵春立介绍,其可以在企业内部部署,也可以在外部的云端进行部署,既支持多租户,也可以支持移动部署。商务智能应用的部署与甲骨文Exa的第三代一体机Exalytics相结合,不同于Exadata和Exalogic,Exalytics具备更强大的商务分析能力,可以将分析应用、分析产品和工具都部署到这台一体机上,除了商务智能本身的部署之外,Exalytics还与Hyperion的成本预算等应用进行了结合,可以更大程度提升用户的体验。
凭借灵活的部署能力,以及覆盖中国市场主要地区的22个分公司,甲骨文商务智能解决方案不仅仅面向金融、电信、政府、能源以及制造行业的大型客户,也针对中小企业提供快速部署的方案。吴韶益说,中小企业在应对IT技术发展浪潮中更容易进行变革,对于快速成长的中小型企业,只要客户有需求,甲骨文会有针对性的提供一个短平快的解决方案,帮助客户进行快速的部署。
从传统数据库模式走到大数据时代是每个企业都需要经历的一次涅槃,不管是大型企业,还是处于快速发展期的成长型中小企业,都可以借助新兴IT技术实现企业核心竞争力的跃升。商务智能应用使得企业以全新的角度审视数据资产,而大数据技术的逐渐普及推动着商务智能迈入全新的发展阶段。在这场“技术”催生“应用”的变革中,商务智能应用只有更好地与大数据技术进行结合,才能为企业创造更大的价值。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20