大科学开启大数据、大发现新时代_数据分析师
大科学工程,是以工程方式、计划手段、汇聚科技资源与力量整体推进重大科技计划的最新范式,是科学研究由传统的“手工小作坊”向现代大规模“工场”演进的一次革命。大科学范式的“兵团作战”,将以空域和领域维度上的大规模,甚至超越时域维度上的长尺度,实现今朝一日、史上数年的突破。
大科学是大数据的摇篮,大数据是大科学的产物
大科学的王者之道始于大数据的产生。人类历史上的大数据,源于科技领域,确切地说源于大科学研究。曼哈顿计划打开了微观世界,并开创了借用人造的大科学设施洞开微观世界的崭新科学方法论,以此为依托启动了一系列大科学计划,它们产生了史无前例的超大规模数据。如位于瑞士的欧洲核子研究中心、由全球逾8000位物理学家合作兴建的大型强子对撞机,2008年试运行后,数据量即达25PB/年,2020年建成后将达200PB/年,因此他们率先创建了“大数据”的概念。无独有偶,旨在测定人类基因组30亿碱基遗传密码的基因组计划,进行个体基因组测定时数据量即已高达13PB/年。而此计划后,学界受其鼓舞开展了一系列遗传背景迥异、不同疾病群体以及大量其他物种的基因组测序,数据量迅速逼近ZB级(是PB的百万倍),不约而同地创造了“大数据”概念。今天人们常用的互联网最初就是这些领域的科学家为解决海量数据传输而发明的。
人类理性对物质世界、人类社会和精神世界的认识,其最高境界是智慧。而要达此境界必然经过数据、信息、知识三个层阶,其中,数据是信息之母、知识之初、智慧之源。随着信息技术持续数十年的迅猛发展以及人类社会各行各业信息化的强力辐射,在人类纪元新千年的钟声敲响不久,文明世界就掀起了史无前例的大数据狂潮,其奔涌之疾,升腾之烈,不似海啸,胜似海啸。人们欢呼,因为它是摧枯拉朽、一往无前的狂飙,将以势不可挡的革命性力量,开辟新的天地;人们恐惧,因为它是行不由缰、漫无方向的野马,有着难以预想的破坏性力量。此时此刻,人类需要冷静,人类必须理性。
人类文明迄今经历了三次浪潮:第一次是农业革命,数千年前出现并持续数千年,释放出“物之力”;第二次是工业革命,数百年前出现并已持续数百年,释放出“能之力”;第三次是智业革命,数十年前开始孕育,目前正处初级阶段,将不断释放“智之力”。1980年,托夫勒预言了这次新起的文明,并明确指出这次文明将以信息化为标志。其后,恰如其料,技术与文明的信息化有如神助,在人类社会各领域、全球各地域甚至更广阔的空域天域似地火一般的点燃、普及。信息社会、信息文明似乎转眼间唾手即得,更有大数据时代的“即时”到来好像为此作了一目了然的注解。冷静分析,实则不然。数据是信息之母,没有数据,何来信息?缺乏数据的时代,怎能是名副其实的信息时代?而刚刚才来的大数据时代,恰恰表明此前是数据欠缺的“时代”。此前,人类发现、开辟的大量全新的数据空间,构建的超大型数据生产“工厂”、超大型数据仓库,建设的“信息高速公路”及其四通八达的网络,为大数据的涌现及其广泛辐射确实提供了充分的先决条件,但它们仅是大数据的摇篮,而不是摇篮里的婴儿。
从大数据向大信息升华,亟待统计科学与数据科学的革新
数据是信息之母,但再好的数据也不会自动生成信息。大数据得来不易,但转化为大信息更难,而不能转化为大信息的大数据就是横亘于人类认知之旅的理性黑洞、知性沙漠。实际上,人类理性跨过蒙昧之初,就拥有了将数据转换为信息的能力,这也是智人与直立人的分水岭。
然而,面对时下大数据时代奔涌的多元、多源、异构的海量数据,无论是被美誉为“孕育了现代科学”的统计科学,还是应大科学之运而生、当今正如日中天的数据科学,都还只能是望洋兴叹。今日之大数据,明日之大信息,扭转乾坤者,还属革新后的统计科学与数据科学。
信息虽然衍进自数据、珍贵于数据,但也只是其通向知识的中继站。知识,是人类理性认识世界的结晶,是改造世界的基石。培根在《伟大的复兴》中豪迈地预言:知识就是力量。大约400年后,人类终于迎来“知识经济时代”。知识经济,作为人类社会经济增长方式与经济发展的全新模式,被称为经济领域的哥白尼革命,其基本特征是:知识运营为经济增长方式、知识产业成为龙头产业、知识经济成为新的最活跃的经济形态。
由此可见,知识不仅是力量,而且是时代最核心、最强劲的先锋力量。但我们同时必须清醒地认识到:大数据与大知识,尚隔两重天,如将大数据比作洪水、比作奔流,它只有首先蒸发为大信息的气流,继而升腾为大知识的彩虹,才能气贯长虹、一飞冲天而成为引领知识经济时代的“巨龙”。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21