大数据营销 传统企业的华丽转身_数据分析师培训
于是,向互联网转型迫在眉睫。然而如何顺利转型,却不是每个广告主都能做到的。怎样才是有效的大数据营销模式,在2014悠易DSP DAY上海站的论坛中,来自数据分析行业专家,成功完成互联网华丽转身的知名传统企业相关负责人,将带您一同探寻大数据营销的奥秘。
大数据营销趋势及扮演的角色
大数据营销要产生效果,需要一定的学习积累包括磨合,这个不是短期内可以产生效果的,它不像今天大家都在投的搜索引擎和直接投放电视广告,预算越大,产生的营销效果越好,这是可以有正向比例的。而利用大数据做营销,效果就如同Log抛物线,越到顶端加速越快,但是起步相对比较难,如果没有等到加速阶段就放弃,自然不会产生客观的效果,对于广告主来说,需要意识到的是,大数据营销需要背后海量数据的积累和分析,这是和普通的营销方式所不同的。
安客诚亚太区产品总监李辉表示,即使有很多的趋势,但大数据营销的本质没有变,就是通过合适的渠道找到合适的人,建立关系,实现销售。最关键的还是营销。
还有一个就是移动,移动造成的受众时间碎片化,跟PC广告不同的是,广告主需要想出受众所在的场景,这是比较困难的。
“在和广告主接触的时候,被问到最多的数据营销问题就是数据带来的价值”,李辉讲到。“数据不是短期内可以一蹴而就的,企业需要有一个内部的数据系统,这对企业也是一个很大的转型。
作为国内知名的广告主企业,海尔做营销的主要目的是什么?海尔是不是真正使用了大数据营销,有成功的解决方案?
海尔家电产业集团数据战略发展总监孙鲲鹏说:无交互不海尔,无数据不营销。数据可以提升我们的营销的效果,通过对数据的采集、挖掘、预测,能够帮助我们提高海尔的营销效率和效果,这是直接的好处。另外还有一个根本的好处是优化用户体验,以前没有数据做基础的时候,企业是单方面的把产品推销给用户。现在有了数据,可以通过需求预测数据模型洞察用户需求,大规模一对一精准营销,这样的用户体验是不一样的。也就是说,以前是为产品找用户,现在是为用户找产品。
至于海尔的数据模型是如何建立的,安客诚李辉介绍说,这些都基于海尔几十年的经验和线下习惯。安客诚将海尔系统来自不同渠道的售后售前和线上数据整合起来,基于这个可以做一些用户行为分析、建模、标签化。在应用到媒体的时候,还有一个要解决的问题,就是把数据和媒体数据实现连接,因为媒体这边也有用户人群的画像,有这么多用户标签,海尔的数据和悠易的数据对接,就可以实现在里面的人群寻找。
未来数字化营销的趋势展望
对企业来说,大数据营销已经成为未来营销新趋势,广告主期待未来会有什么数据在国内市场产生?更期待什么样的数据产品?
当提到这个问题时, 孙鲲鹏表示主要有三个方面:
第一是生态圈。目前海尔数据偏线下,从生产、开发到销售、服务,拥有的是第一方的线下实名数据,缺少线上数据,期待建立一个数据生态圈,在确保用户数据安全的条件下,借用先进的方法,让外部的线上数据和海尔的线下数据进行匹配,丰富用户画像,更加精准地洞察用户。
第二是开放。迫切希望数字营销行业能够开放,而不是大家都把自己的信息关在围墙内。越开放越安全,越关门越危险。至于开放什么?希望多举行类似的论坛,互相连接,不谈恋爱不见面怎么结婚?
第三是标准。希望建立数据行业标准。比如说安全,到底什么叫数据安全?比如海尔与互联网企业之间,什么样的安全标准双方都可以接受?包括企业的DMP数据管理平台与外部的DSP平台对接,PMP、RTB的开展,现有标准是否最合适?而且这个标准需要通俗易懂,否则这个新事物很难快速推广。
对于建立行业标准,安客诚李辉也表示赞同,未来安客诚将解决数据连接性问题,怎样能够有一个很好的数据连接技术平台,能够既保护好数据的产权,又实现数据的价值衡量。最后实现技术层面和整个业态的开放和广告主的开放。
杨纯表示,Admaster在2015年更希望为广告主提供好两个方面的工作,第一,连接外面的互联网数据,更好的为顾客服务。第二,帮助广告主把现在已有的数据,包括自有数据,怎么能够更好的在媒介环境里形成更加清晰全面的认识,只有了解才能投放,这两件事情做完以后,就是整个大数据的体现。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21