一、统计学基础部分
1、《统计学》 David Freedman等著,魏宗舒,施锡铨等译 中国统计出版社
据说是统计思想讲得最好的一本书,读了部分章节,受益很多。整本书几乎没有公式,但是讲到了统计思想的精髓。
2、《Mind on statistics(英文版)》 机械工业出版社
只需要高中的数学水平,统计的扫盲书。有一句话影响很深:Mathematics as to statistics is something
like hammer, nails, wood as to a house, it\’s just the material and
tools but not the house itself。
3、《Mathematical Statistics and Data Analysis(英文版.第二版)》 机械工业出版社
看了就发现和国内的数理统计树有明显的不同。这本书理念很好,讲了很多新的东西,把很热门的Bootstrap方法和传统统计在一起讲了。Amazon上有书评。
4、《Business Statistics a decision making approach(影印版)》 中国统计出版社
在实务中很实用的东西,虽然往往为数理统计的老师所不屑
5、《Understanding Statistics in the behavioral science(影印版)》 中国统计出版社
和上面那本是一个系列的。老外的书都挺有意思的
6、《探索性数据分析》中国统计出版社 和第一本是一个系列的。大家好好看看陈希儒老先生做的序,可以说是对中国数理统计的一种反思。
二、回归部分
1、《应用线性回归》 中国统计出版社
还是著名的蓝皮书系列,有一定的深度,道理讲得挺透的。看看里面对于偏回归系数的说明,绝对是大开眼界啊!非常精彩的书
2、《Regression Analysis by example (3rd Ed影印版)》
这是偶第一本从头到底读完的原版统计书,太好看了。那张虚拟变量写得比小说都吸引人。没什么推导,甚至说“假定你有统计软件可以算出结果”,主要就是将分
析,怎么看图,怎么看结果。看完才觉得回归真得很好玩
3、《Logistics回归模型——方法与应用》 王济川 郭志刚 高等教育出版社 不多的国内的经典统计教材。两位都是社会学出身,不重推导重应用。每章都有详细的Sas和SPSS程序和输出的分析。两位估计洋墨水喝得比较多,中文写的书,但是明显老外写书的风格
三、多元
1、《应用多元分析(第二版)》 王学民 上海财经大学出版社
现在好像就是用的这本书,但是请注意,这本书的亮点不是推导,而是后面和SAS结合的部分,以及其中的一些想法(比如P99 n对假设检验的影响,绝对是统计的感觉,不是推推公式就能感觉到的)。这是一本国内很好的多元统计教材。
2、《Analyzing Multivariate Data(英文版)》 Lattin等著 机械工业出版社 这本书有很多直观的感觉和解释,非常有意思。对数学要求不高,证明也不够好,但的确是“统计书”,不是数学书。
3、《Applied Multivariate Statistical Analysis (5th Ed影印版)》 Johnson & Wichem 著 中国统计出版社
个人认为是国内能买到的最好的多元统计书了。Amazon 上有人评论,评价很高的。不过据王学民老师说,这本书的证明还是有不太清楚,老外实务可以,证明实在不咋的,呵呵
四、时间序列
1、《商务和经济预测中的时间序列模型》 弗朗西斯著
Amazon 上五星推荐的书,讲了很多很新的东西也非常实用。我看完才知道,原来时间序列不知有AR(1) MA(1)啊,哈
2、《Forecasting and Time Series an applied approach(third edition)》 Bowerman & Connell 著
本书的主讲Box-Jenkins(ARIMA)方法,附上了SAS和Minitab程序
五、抽样
1、《抽样技术》 科克伦著 张尧庭译
绝对是该领域最权威,最经典的书了。王学民老师说:这本书不是那么好懂的,数学系的人,就算看得懂每个公式,未必能懂它的意思(不是数学系的人,还是别看了吧)。
2、《Sampling: Design and Analysis(影印版)》 Lohr著 中国统计出版社
讲了很多很新的方法,无应答,非抽样误差,再抽样,都有讨论。也很不好懂,当时偶是和《Advance Microeconomic
Theory》一起看的,后者被许多人认为是梦魇,但是和前者一比,好懂多了。主要还是理念上的差距。我们的统计思想和数据感觉有待加强啊
六、软件及其他
1、《SAS软件与应用统计分析》 王吉利 张尧庭 主编
好书啊!!!!
2、《SAS V8基础教程》 汪嘉冈编 中国统计出版社
主要讲编程,没怎么讲统计。如果想加强SAS编程可以考虑。
3、《SPSS11统计分析教程(基础篇)(高级篇)》 张文彤 北京希望出版社
当初第一次看这本书,发现怎么几乎都看不懂,尤其是高级篇,现在终于搞清楚了:)
4、《金融市场的统计分析》 张尧庭著 广西师范大学出版社
张老师到底是大家,薄薄的一本书,言简意言简意赅,把主要的金融模型都讲清楚了。看完会发现,分析金融单单数学模型还是纸上谈兵,必须加上统计模型和统计方法才能真正应用。本书用的多元统计(代数知识)比较深
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31