大数据会否使计划经济最终掌控世界
昨天可穿戴设备之父,大数据大师阿莱克斯·彭特兰来百家《BIG TALK》与中国科技界对话,在现场,我提向彭特兰提了一个已经思索许久的问题,请他回答。
问题大概是这样的:作为一种人类管理社会经济的一种实验,计划经济可说在之前是失败的,事实证明,国家通过计划指令的方式进行资源配置不如通过市场实现资源配置效率更高。但是,随着大数据技术的进步,国家对经济数据的掌控能力也随之增强,这会不会导致未来有一天,计划经济最终掌控世界?
可能因为翻译的问题,也可能是因为问题本身比较复杂,彭特兰并没有给出一个思路清晰的答案,我把这个同时转发到网上,也引发激烈争议,有的朋友强烈否定,有的朋友则有所反思。
如果排除意识形态方面的门户之见,我认为计划经济和市场经济各自优劣性以及在未来人类社会中各自所处的地位,市场是否永远是资源配置的最佳手段和主导性手段,这些问题,都是很值得讨论的。
人类自理性产生以来,对世界的掌控欲(政府世界)也随之而生,由此而言,掌控经济也是人类的天性所在,这也是乌托邦时期以及之后李斯特、马克思等经济学大师探索“计划经济”的由来。而后来在苏联和中国等社会主义国家的试验又证明,计划经济至少在目前是失败的。
计划经济试验在苏中的失败有各种原因,但归根结底还是因为它不如市场那样配置资源更有效率,无法精准的解决生产什么、怎样生产和为谁生产这三个主要问题。国家无法确切的知道消费者到底需要什么,自然在进行经济计划的时候会错漏百出。
但如果人类做计划的能力得到大幅度提高,会不会在某一天使计划的效率终于超过市场呢?在没有互联网之前,学界总认为在人类可预见的将来这是不可能的。但互联网和信息革命已经颠覆了太多东西,至少在收集信息数据、互联信息数据、储存信息数据、处理信息数据方面,其进步是所有人都不曾想到的,而这一不曾预想到的进步的结果之一,就是人类计划能力的提高,对世界的掌控力更强了。
市场是人类经济社会运行的原始动力,但计划因素的持续增强却也是事实,除了计划经济试验,企业的出现以及其规模的越来越大,也是计划因素增强的结果。因为在企业内部,本身就是“计划经济”的。
既然市场是在价格机制的支配下自发运行,既然无形的手无处不在,为什么还会有企业?上世纪30年代科斯就因为研究这一问题拿了诺贝尔经济学奖,他研究出的答案是,市场的运行时有成本的(交易成本),如果组织企业能够节约交易成本,企业的存在就有意义。
按这一逻辑,企业越大自然是节约的交易成本越高,但为什么在经济社会的早期,基本上没有什么大企业呢?因为技术达不到,企业的组织成本一旦高于交易成本,则企业存在无意义。随着技术的提高,企业的组织成本越来越低,企业的规模也越来越大,这就有了今天的跨国公司。企业规模的边界由技术决定,跨国公司的组成成本一旦高于交易成本,它就再也没法有效扩张了。
国家的道理也一样,黄仁宇当年研究明史,讲中华帝国为什么会一直运行低效,就是因为缺乏有效的“数目字管理”。所有帝国都一样,帝国的管理能力能够达到的极限,就是帝国崩溃前的边界。
但技术的进步,尤其是大数据的进步,却有可能把人类能够进行计划的边界大大扩张,扩张到足有一个国家那么大。而此处之大,并不只是指宏观上的规模大,也指在微观上的细致深入,尤其是后者,在之前,微观资源无法有效分配,是计划经济里最受批评的要点。因为国家所有资源都由政府决定,私人不掌握生产资料,于是乎国家可以罔顾私人的实际需要而进行经济计划。奥地利经济学派的路德维希·冯·米塞斯主张社会主义在经济上必然会失败,因为经济计算问题注定了政府永远无法正确的计算复杂万分的经济体系。只要缺乏了价格机制,社会主义政府根本无从得知市场需求的情报,而随之而来的必然是计划的失败和经济的彻底崩溃。
但现在,电脑、手机、可穿戴设备,再加上无线互联网,人类的需求从来没有如此容易地被汇集、处理,人类的数据处理能力从来没有的强大--未来会更强大,那么,未来政府是否会有可能更正确的“计算复杂万分的经济体系”呢?
计划经济管理的国家,说简单了,就是一个采取某种制度管理的超级公司,这个公司可能是集权的,也可能是民主的。完美的计划经济可确保所有资源都能持续运用,不会受到经济周期的波动所影响,如泡沫经济、停产以至失业问题都不会发生,而通货膨胀问题不会存在,而长期性的基建投资,更不会受市场因素而停止。正因为这些完美的预期,几百年间才会有无数人去憧憬试验计划经济。大数据技术的进步,会复活这些憧憬吗?
最后,本文无意进行意识形态方面的争论,只是从技术进步层面提出一些学术假设,而这些假设也不代表作者对计划经济或者市场经济的立场与看法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13