网络谣言:大数据显示83%的由男性制造 女性更愿传谣
昨天是愚人节,一场针对如何甄别网络谣言的“辟谣大会”在中山大学举办。记者获悉,微信每天收到用户发起的谣言举报就有3万次,日均谣言拦截量达到210万次。中山大学的研究显示,微信谣言周一、周二、周三和周六四天是举报高峰,谣言在这四天也是格外忙。
在现场分享中,中山大学传播与设计学院院长张志安表示,微信谣言主要集中在食品安全、人身安全、疾病三个领域。在时间轴上发现,周一、周二、周三和周六是谣言散布的高发期,而数字夸大、图片夸张的文章是谣言最常使用的方式。张志安表示,对于伪装“高大上”权威感的文章,公众一定要小心辨别。
“从大数据分析来看,谣言具有‘六个面孔’”, 知微CEO于霄博士利用大数据对谣言进行了分析,他指出,假借权威、捏造数据、制造恐慌、嫁接图片、偷换概念、直击刚需等是谣言传播常用的手段。但是,生产谣言易,粉碎谣言难。他指出,谣言产生后,就像癌症一样难以清除,具备传播周期长、传播范围广的特点,大大增加了辟谣难度。“真相开始传播时,谣言已经跑了半个地球。”于霄说。
数据显示,在微信、微博和新闻客户端等谣言的制造和传播中,男女作出的“贡献”极为不同,男性制造了谣言中的83%,而女性只占17%。不过,在谣言传播过程中,女性会相对更愿意传播。
针对谣言如何粉碎, 果壳网主编徐来向三百多位现场的听众分享了果壳网辟谣的经验。他指出,以分辨难度更高的科学谣言为例,分析谣言的传播方式、谣言来源之后,果壳网会通过发现选题、拆解话题、查找文献的过程,来开展辟谣工作。授人以鱼不如授人以渔,徐来说:“查明信息出处、信息中的原始人名、机构名,向专业人士请教,学会这几项本领,人人就都有台谣言粉碎机。”
微信日均谣言 拦截量达210万次
“谣言虽然难治,但是也要一管到底。”微信安全负责人杨光作为此次辟谣大会的最后一位嘉宾,用“死磕到底”来表明微信对于整治网络谣言的态度,在现场分享中,杨光还补充了微信朋友圈谣言的判定标准与规则,从规范和平台安全维护方面把好第一关。
杨光介绍,微信每天收到用户发起的谣言举报就有3万次,谣言样本库积累的种子量达到30万个,日均谣言拦截量达到210万次。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22