大数据张开“乌鸦嘴”_数据分析师
里约当地时间上周五,2016年里约奥运会迎来倒计时500天。在里约,中国健儿将取得怎样的成绩?奖牌榜又将是何格局?关于这些,国际奥委会官方数据提供商、著名的荷兰体育数据统计公司Infostrada给出了经过科学分析后的奖牌预测榜。在这份预测的榜单中,中国代表团将以28金28银20铜的成绩,继续排在美国队之后、位列奖牌榜第二位,但金牌数和奖牌总数分别较伦敦奥运会缩水10枚和12枚。
这份奖牌榜详细预测到每个项目的金银铜牌甚至是前八名获得者,根据每位选手在本奥运周期参赛的表现预测得出,参赛数量对成绩排名有比较大的影响。被看低的还不只是中国队,男子百米纪录保持者、“闪电”博尔特被预测在里约将马失前蹄,只能获得一枚银牌……
曾准确预测刘翔的失败
总部位于荷兰小镇纽沃海根的Infostrada公司长期负责奥运会实时数据提供,也是包括北京奥运会在内的多届大赛官方数据提供商。长期以来,它对全世界各奥运项目最优秀的运动员进行成绩追踪、分析和统算,并每月更新数据。
Infostrada的首席数据分析师西蒙·格里夫告诉CNN,这都归功于他们那台名叫“Maggie”的超级计算机。“里约奥运会28个竞赛大项近9年来所有有价值的比赛结果和参赛个体的数据都会源源不断地被录入,所有项目的前八名都会按照不同的分值成为数据,汇总为各个国家地区的虚拟奖牌数。”西蒙称,他们每个月都会根据赛事信息更新预测榜。从2011年开始,Infostrada公司就先后对伦敦奥运会进行预测。2011年3月,在伦敦奥运会倒计时500天后,Infostrada随即推出了预测奖牌榜,当时预测中国队以27枚金牌、84枚奖牌列美国队之后,排名奖牌榜第二名。而更新到了2012年3月,他们实时预测中国队的金牌数将达到了35枚,最后的误差仅在3枚(最终中国队以38金位列金牌榜第二)。更为惊人的是,当时他们就预测了刘翔将不会在男子110米栏的决赛名单(即前八名)内,结果刘翔果然因伤摔倒在预赛的栏架前。
不过,最令Infostrada夸耀的是,他们早在2011年3月就预测英国队将以65枚奖牌位居奖牌榜第3位,并预测美国、中国、英国和俄罗斯四队将列前4位,这与最终排名完全一致。
孙杨、博尔特或意外失金
这份里约奥运会虚拟奖牌榜还对每个国家的夺金项目进行了详细的预测:中国队的夺金优势依然集中在跳水、乒乓球和羽毛球中。按照Infostrada的预测,三大项仅仅只会丢掉男子双人十米跳台和羽毛球男双这两枚金牌。而张继科和刘诗雯则被视作男女单打夺金的人选,而羽毛球男单则是谌龙摘金,林丹夺得铜牌。在Infostrada看来,中国体操队和举重队的奖牌将缩水,体操男子单项更是颗粒无收,射击队则将射落3金。在伦敦奥运崛起的中国游泳也不被看好,仅仅只有孙杨被看好卫冕男子400米自由泳,而他擅长的1500米自由泳则意外失金。
在这份预测奖牌榜中,最令人吃惊的是世界第一飞人博尔特将无缘实现男子百米三连冠,而美国老将加特林则将夺得百米金牌。西蒙解释说,尽管过去十年中,牙买加人几乎统治了男子短跑项目,但因为他从2013年起,参赛极少,因此在他们的电脑数据分析库里,缺乏足够的令人信服的优势。“如果在今夏的北京世锦赛上,博尔特有不俗的发挥,那么这套一直在工作的数据分析体系依然会把博尔特放在夺金的位置上。”
中国花游、自行车有望首次夺金
Infostrada还预测到在里约,中国队将在花样游泳和自行车项目上取得历史性突破。黄雪辰/孙文雁被看好在花样游泳双人项目摘金,而中国地自行车女子团体也有望为自行车项目拿下历史第一金。三大球项目中,惟有郎平带领的中国女排有望收获一枚铜牌。不过Infostrada也承认,兴奋剂问题并不在这套分析系统中,因此这也是他们在预测中无法规避的问题。首席数据分析师西蒙·格里夫表示,他们已经尽力做到专业和科学,很多退役、被禁赛或死亡的运动员很快就会在预测榜中被“下架”。
然而,竞技体育的最大魅力就在于不确定性,注定这份预测不可能完全准确。例如Infostrada预测林丹、孙杨的单项成绩都不算突出,但平日适度调整而“大赛发力”的林丹、孙杨这样比赛型的选手仍有可能力挫劲敌夺冠。虚拟奖牌榜只是基于事实分析,为教练员、媒体等提供一份参考数据。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28