大数据张开“乌鸦嘴”_数据分析师
里约当地时间上周五,2016年里约奥运会迎来倒计时500天。在里约,中国健儿将取得怎样的成绩?奖牌榜又将是何格局?关于这些,国际奥委会官方数据提供商、著名的荷兰体育数据统计公司Infostrada给出了经过科学分析后的奖牌预测榜。在这份预测的榜单中,中国代表团将以28金28银20铜的成绩,继续排在美国队之后、位列奖牌榜第二位,但金牌数和奖牌总数分别较伦敦奥运会缩水10枚和12枚。
这份奖牌榜详细预测到每个项目的金银铜牌甚至是前八名获得者,根据每位选手在本奥运周期参赛的表现预测得出,参赛数量对成绩排名有比较大的影响。被看低的还不只是中国队,男子百米纪录保持者、“闪电”博尔特被预测在里约将马失前蹄,只能获得一枚银牌……
曾准确预测刘翔的失败
总部位于荷兰小镇纽沃海根的Infostrada公司长期负责奥运会实时数据提供,也是包括北京奥运会在内的多届大赛官方数据提供商。长期以来,它对全世界各奥运项目最优秀的运动员进行成绩追踪、分析和统算,并每月更新数据。
Infostrada的首席数据分析师西蒙·格里夫告诉CNN,这都归功于他们那台名叫“Maggie”的超级计算机。“里约奥运会28个竞赛大项近9年来所有有价值的比赛结果和参赛个体的数据都会源源不断地被录入,所有项目的前八名都会按照不同的分值成为数据,汇总为各个国家地区的虚拟奖牌数。”西蒙称,他们每个月都会根据赛事信息更新预测榜。从2011年开始,Infostrada公司就先后对伦敦奥运会进行预测。2011年3月,在伦敦奥运会倒计时500天后,Infostrada随即推出了预测奖牌榜,当时预测中国队以27枚金牌、84枚奖牌列美国队之后,排名奖牌榜第二名。而更新到了2012年3月,他们实时预测中国队的金牌数将达到了35枚,最后的误差仅在3枚(最终中国队以38金位列金牌榜第二)。更为惊人的是,当时他们就预测了刘翔将不会在男子110米栏的决赛名单(即前八名)内,结果刘翔果然因伤摔倒在预赛的栏架前。
不过,最令Infostrada夸耀的是,他们早在2011年3月就预测英国队将以65枚奖牌位居奖牌榜第3位,并预测美国、中国、英国和俄罗斯四队将列前4位,这与最终排名完全一致。
孙杨、博尔特或意外失金
这份里约奥运会虚拟奖牌榜还对每个国家的夺金项目进行了详细的预测:中国队的夺金优势依然集中在跳水、乒乓球和羽毛球中。按照Infostrada的预测,三大项仅仅只会丢掉男子双人十米跳台和羽毛球男双这两枚金牌。而张继科和刘诗雯则被视作男女单打夺金的人选,而羽毛球男单则是谌龙摘金,林丹夺得铜牌。在Infostrada看来,中国体操队和举重队的奖牌将缩水,体操男子单项更是颗粒无收,射击队则将射落3金。在伦敦奥运崛起的中国游泳也不被看好,仅仅只有孙杨被看好卫冕男子400米自由泳,而他擅长的1500米自由泳则意外失金。
在这份预测奖牌榜中,最令人吃惊的是世界第一飞人博尔特将无缘实现男子百米三连冠,而美国老将加特林则将夺得百米金牌。西蒙解释说,尽管过去十年中,牙买加人几乎统治了男子短跑项目,但因为他从2013年起,参赛极少,因此在他们的电脑数据分析库里,缺乏足够的令人信服的优势。“如果在今夏的北京世锦赛上,博尔特有不俗的发挥,那么这套一直在工作的数据分析体系依然会把博尔特放在夺金的位置上。”
中国花游、自行车有望首次夺金
Infostrada还预测到在里约,中国队将在花样游泳和自行车项目上取得历史性突破。黄雪辰/孙文雁被看好在花样游泳双人项目摘金,而中国地自行车女子团体也有望为自行车项目拿下历史第一金。三大球项目中,惟有郎平带领的中国女排有望收获一枚铜牌。不过Infostrada也承认,兴奋剂问题并不在这套分析系统中,因此这也是他们在预测中无法规避的问题。首席数据分析师西蒙·格里夫表示,他们已经尽力做到专业和科学,很多退役、被禁赛或死亡的运动员很快就会在预测榜中被“下架”。
然而,竞技体育的最大魅力就在于不确定性,注定这份预测不可能完全准确。例如Infostrada预测林丹、孙杨的单项成绩都不算突出,但平日适度调整而“大赛发力”的林丹、孙杨这样比赛型的选手仍有可能力挫劲敌夺冠。虚拟奖牌榜只是基于事实分析,为教练员、媒体等提供一份参考数据。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22