利用大数据技术创新社会治理_数据分析师培训
【大数据时代的机遇与挑战】
交通拥堵一直是令城市管理者十分头疼的难题。为缓解交通拥堵,利用信息技术是其中的新方向之一。2012年IBM的研究者与法国里昂市合作开发了一套缓解道路拥堵的系统——“决策支持系统优化器”,通过整合、分析市政网络现有交通数据以及来自社交媒体的新数据来医治交通顽疾。这只是运用大数据来解决社会治理难题的一个初级案例,不远的将来,利用大数据技术进行社会决策与治理,有可能成为政府行使职能的常态。
大数据技术为社会治理带来新机遇
社会治理是对社会的经济、政治和文化等事务进行的组织、协调、指导、规范、监督的过程。它涉及合理有效配置社会资源,比如提供教育、文化、卫生、体育、社会保障等社会公共服务和公共产品,保障社会公平与公正;涉及通过行政及司法手段保障社会安全和社会稳定。而社会治理目标的实现,是以掌握治理对象的状况及其外部环境的信息为前提的。现阶段,我国正处在社会转型期,急剧发展变化的社会,对于包括人、财、物、事等在内的庞大而复杂的社会管理信息需求,与当前大数据技术的发展不期而遇。
创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系、维护社会秩序所面临的一项重大战略任务。针对目前社会治理领域普遍存在的服务理念滞后、决策机制不够科学、部门协作亟须加强、工作方式待改进与工作效率求提升等问题,大数据技术从认识、理论、方法、实践和效果评估等方面都能给人以启发。大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为社会转型期的社会治理创新带来了机遇。
大数据在社会治理中的创新应用实践
建立大数据中心,及时搜集、实时处理数据信息,为科学决策提供坚实基础。政府部门是社会治理的主导者,在出台社会规范和政策时,依赖大数据进行分析,可以减少因缺少数据支撑而带来的偏差,提高公共服务的效率。实践中,浙江法院系统通过建立全国法院案件信息数据库,及时、全面、准确地采集反映案件及其审理过程情况的各类信息,为加强对办案的全流程监管,实现科学分类、多元检索和海量数据的分析比对奠定了基础。
打造大数据电子政务平台,畅通利益诉求与沟通渠道,建立主动应对的社会治理模式。大数据分析注重用户行为的分析和反馈,通过网上办事、区域联动、资源共享的电子政务平台和网格化社会管理体系,促进政府和公众互动,获取公众行为的大数据并加以分析,可以更加及时地发现社会矛盾和问题,将过去政府被动应对问题转变为主动发现问题和解决问题的治理模式。
对社会大数据进行历时性和实时性分析,加强社会风险控制,提高政府预测预警能力和应急响应能力。无论是对现实社会各行业的运行监控,还是对网络虚拟社会的治理,都可以基于历时和实时的大数据分析,密切掌握市场调节失灵、社会秩序与稳定受到威胁等需要社会治理介入的节点或情况,这对于进一步加强和完善社会公共安全体系,完善社会应急管理体制等具有重要作用。
积极发展大数据技术创新社会治理
制定大数据国家战略,加强顶层规划和设计,打造“数据中国”。大数据将成为引领未来科技和社会进步的重要载体。麦肯锡的大数据研究报告称,大数据是国家和地区发展的主要指标,已经渗透到金融、健康、住房、交通、教育等重大民生领域,正在影响着企业的决策和国家发展的战略部署。国际上,美国、英国、法国等发达国家先后出台大力发展大数据技术的相关政策,日本和韩国也积极付诸大数据技术的实践。我国广东、上海、山东、浙江等部分经济发达地区也已先后启动大数据行动计划或成立大数据联盟,以促进大数据技术的发展和应用。大数据技术发展既是创新社会治理的需要,也是信息社会发展的必由之路。建议我国从国家层面设计大数据发展战略,做好顶层设计,引导和推动各领域、各行业对大数据的研究和利用。
完善大数据基础设施建设,扩大社会应用,促进数据驱动的社会决策和治理常态化。信息技术基础设施是大数据技术应用的载体,大数据本身也将成为社会基础设施的一部分。大数据中心和数据应用平台建设的水平,决定了大数据时代的数据能否被有效收集、分析、挖掘和应用。这些大数据基础设施的建设可以与国家信息化建设相融合,以政府为主导、技术型企业为主力、公众参与为纽带,形成覆盖有线与无线互联网、各种社交网络、各种使用终端在内的社会化统一数据平台,通过大数据挖掘和分析技术,有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。同时建立数据库资源的共享和开放利用机制,不仅打破政府部门间的“信息孤岛”现象,也加强政府与社会公众间的互动反馈,不断扩大在教育、医疗等领域的应用,使数据驱动的社会决策与科学治理常态化。
建立数据使用规范,规避大数据的使用风险。技术往往是一把双刃剑。大数据的收集和使用可能涉及国家信息安全和公民隐私等,需要在立法层面明确大数据采集和使用的原则。大数据平台本身的安全性也应引起重视,需要国家相关部门制定大数据技术标准和运营规范,重视大数据及信息安全体系建设,加强对重点领域敏感数据的监管。应当采取必要措施,构建大数据良性生态环境,调动全社会积极、有序地运用大数据技术来创新社会管理。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28