大数据助保险业加快变革_数据分析师培训
保险业对大数据的偏爱不仅体现在业务处理的高效率和增加保费收入上,更重要的是通过数据整合分析,可以精准定价和精确营销,为客户创造更好的用户体验,增加客户黏性。
同时,保险公司也需要在拓宽数据来源以及做好客户信息安全保密方面,做出更多的探索
当越来越多的传统行业向“互联网+”的风口进军,以“大数法则”为宗旨的保险公司也看到了大数据时代带来的新机遇。一系列的内部改造正给这个庞大的金融行业带来变革。
更好的客户体验
从“下单”到完成销售一张保单仅需6秒钟,2分钟售罄15000张保单,合计3.8亿元的保费,对当前的保险业而言,这已经不是神话。在去年的元宵节当天,珠江人寿就和淘宝合作,借力互联网的云服务和多数字通道技术,不仅创造了业绩,还提供了极佳的用户体验。
互联网的大数据处理、整合、分析能力正在受到越来越多保险公司的重视。
近日,泰康人寿也成立了移动互联部和大数据部,在数据信息中心原有的数据服务、支持服务、信息技术基础设施等职能的基础上,这两个部门将更侧重于与大数据及移动互联相关的应用规划、系统开发、上线维护、技术研究和市场推广规划等工作。
为配合这一部署,泰康人寿在北京中关村数据中心的基础上,将继续在武汉光谷、北京长安街再建2个数据中心。
保险业对互联网和大数据的偏爱不无道理,这不仅体现在业务处理的高效率和增加保费收入上,更重要的是给客户留下深刻印象,增加客户黏性。
“通过对客户内外部数据整合,进行客户分群,建立不同客群特征差异和偏好信息库。然后对单一客户行为和消费偏好进行预测,(CDA数据分析师培训)使客户在线通过各类界面与公司接触时,享受差异化互动沟通服务,增加客户与公司之间的信任和亲密度。”太平洋保险在线商城平台建设人员表示。
有利于精准定价
除了增加全新的用户体验,大数据还有望在产品风险定价方面发挥巨大作用。
据业内人士介绍,保险产品的定价主要分为3步:即保险产品的初步创意,保险产品形态讨论和确认,以及定价模型和保费计算。
“这3步都离不开保险公司的精算师。然而,在大数据时代,传统的精算模型面临着挑战,大数据可能颠覆传统保险的定价方式。”珠江人寿相关负责人在接受采访时表示,未来的核保定价模型将不再局限在以往的性别、职业、疾病发生率、生命表、住院发生率等单一维度的历史数据,将包含地区、生活作息、浏览记录、运动频率、兴趣爱好、上网时间等多维度更加全面的信息。
“大数据这一浪潮并非颠覆传统保险业,而是更好地为保险公司精确营销的战略铺平道路。”太平人寿相关人士认为,保险业走进大数据时代是大势所趋,目前保险公司也都以开明和进取的态度,积极投入资源开发这一领域。
“如果保险公司能够获取客户的财务状况和消费习惯,将能开发出更适合客户的产品,进行产品优化和精准营销。”这一判断已经成为很多保险公司的共识。
数据获取和安全性待解
保险业应用大数据虽然前景看好,但有业内人士指出,目前的瓶颈在于缺乏数据来源。
据了解,应用大数据需要具备两方面的基础条件:一是拥有可靠、有效的大数据的获取来源;二是拥有大数据的专业处理技术,即如何从海量数据中挖掘处理形成有效信息。
在中诚信国际金融机构部高级分析师张佳梦看来,大数据的获取和互联网信息化技术的使用密切相关,而目前来看,这一渠道仍处于布局初期,尚未形成有效的规模和有效的数据基础。另外,保险业此前一直处于产品同质化和规模扩张的粗放式发展阶段,前期投入到数据处理分析上的资源是有限的,因此现阶段的数据挖掘分析处理的技术能力有待提升。
“与大型互联网公司及银行、证券等大型金融机构相比,国内的保险公司特别是对于新成立的中小型保险公司而言,对大数据的应用面临着诸多困难。”珠江人寿相关负责人告诉记者,一方面数据的收集共享有待突破,另一方面如何做好客户信息安全保密必须有相关的制度和措施。
“保单信息关系到客户的个人隐私,做好客户信息的保密工作关系到投保人、被保险人的生活或者财产的安全及客户对公司的信任。因此,如何做好客户信息安全的保密工作不仅对保险公司提出了严格的要求,也是对国家相关法律制度的建设及完善的一大挑战。”据珠江人寿相关负责人介绍,公司严格按照监管规定制定并执行相关的《网络信息安全管理办法》,同时,将客户信息保密工作列入人力资源管理体系,从制度及岗位设置上降低了客户信息外泄的可能。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21