如何利用大数据思维在北京租到好房子_数据分析市场培训
第一步:精准定位。
确定找房地点,精确到小区。每个小区在任意时间,至少有三五间空房待租。大的小区,有几十间。完全不要担心没房。如果没有,基本是因为数据挖掘的能力不足。五环之内,如果两个毗邻的小区都没有空房,中国经济就要出大问题了。但一个小区的数据少,是很常见的。所以,我一般至少收罗4个小区的数据。
比如,我在凤凰网上班,要到市区,就会选择在地铁站和单位沿线的小区。
凤凰网到望京地铁站3公里,步行30分钟。
最理想的小区是A,其次是B、C、D。
第二步:数据挖掘。
这一步是个技术活,很关键。技术体现在你依据哪些指标进行挖掘。
我总结个口诀,叫“四看四不看”。
四看:看小区、看价位、看个人、看户型。
1、看小区。不要以地铁站诸如“望京”来搜索,要定位精准。
2、看价格。价格没有太多回旋的余地。在北京,五环左右和别人合租,单间的价钱基本不会超过2000。望京一带,单间基本是1500到2000。低于1500的条件不好,高于2000的又偏贵。
3、看个人房源。“100%个人房源”都会碰到中介。不要对中介寄予任何希望。但可以利用中介,就是在个人房源实在找不到的时候,找中介带你看一两家,熟悉一下行情。别看太多,因为人家中介挣钱也不容易。既然不打算走中介,别太麻烦人家。
4、看户型。户型数据未必真实。有些三室一厅的,客厅被隔断,住6家。我看到4室的基本不考虑。除非数据实在不够,也会抄上备用。合租人多会出现极大的麻烦,没人会主动倒洗手间的厕纸。而收水电费时有人拖欠不交就更让你苦恼了。
四不看:不看照片。不看设施、不看装修、不看面积。
1、不看照片。“有图有真相”这句话在两种地方万万不能相信,一种是租房网站上,一种是女生朋友圈自拍。记住,一定要看现场。照片拍得天花乱坠,没有用。
2、不看设施。不要去比较写的有空调没空调,有些有空调,但可能根本不制冷了。有些没空调,纯粹因为房主忘写了。
3、不看装修。中等装修、装修很好,这些描述太主观。很多冒充二房东的中介,把破烂的房子写成中等装修。
4、不看面积。同样大小的房子,有人写15平,有人写28平。一样主观。
你都大数据了你还相信主观描述么?一切以现场为准。看主观信息纯粹是浪费时间。
明确了“四看四不看”,半小时你就能找到一堆数据,格式如下:
第三步:剔除无效数据。
上一步挖掘到的数据,有三种是无效的,一种准有效的,一种有效的。
无效数据:
1、电话打不通的。
2、中介冒充个人的。
3、房子已租出去的。
准有效数据:
1、房子还没租出,但人不在家。
有效数据:
1、人在,现在可以看房。
这一步需要到了现场再开始实施。不要边挖掘数据边打电话。只要你的数据样本足够多,不怕不存在有效数据。而且,你先打电话约好时间,到了地方,人可能又不在了。所以,到小区再打电话,然后开始批量剔除。
不好意思,纸片装在裤兜里,天热出汗,就成这熊样子了。
每当你划掉一道线时,心里就多了一分成就感。
第四步:周边调研。
工作日最好下午出发,但做好下午看不到合适房子的准备。因为有正经职业的人,白天基本都在上班。你碰到的很可能是假冒二房东的中介,或者是没有正经职业的。和这些人合租可能会遇到很多问题。比如大白天趁你不在带了一堆狐朋狗友来家里,搞不好在家里吸毒你都不知道。
那下午出发的意义是什么呢?热身。
顺便在小区看看风景。当你时间太急迫的时候,就不会留意小区设施风景、周边吃的玩的和商场多不多,交通是否便利这些了。不要以为这些不重要。越是着急找房子,越不能粗疏。节奏一定要对。急中有缓,由缓而速。
每个小区都有一群群中介。他们走过你身边时,一定要把纸揣好了。让自己像个特务一样,装作若无其事地看大妈跳广场舞。一边看,一边拨出电话。这时,只见一个大妈从广场舞队伍里溜出来了。没错,白天不上班的,不一定是中介,还有可能是退休的房东大妈。
别从位置最优的小区开始。这样,即便看到好房子,你还会对下家有期待。如果先看位置最优的小区,你可能一激动就拍板决定了,这样很容易错失更舒服的房子。
第五步:现场勘查。
不要预设。一定要找带空调的,一定要找有电梯的——太陋(low)了。
记住,你是在用大数据思维找房子,还能提出以上标准吗?
以下指标才是合适的:
1、要木地板,不要地板砖。
地板甚至比电视、空调还重要。卧室是木地板,或者看着像木地板的话,你回到家会感觉很放松,如果是地板砖,就给人一种冰冷的感觉,还像在办公室里。
2、要有客厅,不要隔断。
哪怕你不住隔断,也不要租带隔断的房子。有隔断就意味着没有客厅。有大客厅,基本上就有沙发,沙发前边基本就有电视,甚至还有大阳台。没有客厅的话,你的空间就只剩下卧室了。
3、窗户朝南,要无遮挡。
休息日你可以看到大把的阳光毫不吝惜地照进来。这一点对于好心情非常重要。如果你的窗子朝西或者朝北,或者有高楼遮住了你一半的视线,或者窗户太小,你就不会太开心。脑补一下吧:大冬天的周末,睡到十点,拉开窗帘,满室生春,泡一壶茶,站在窗前,远远近近的风景尽收眼底。你顿时爽了。
4、要大床,除非你受了八关斋戒。
广场舞大妈说她只让正经人住,你要不正经她还不租给你呢,然后一个劲儿地夸自己的房子有多么好。但你还是看出一些弊端,比如卧室没有床,只有一张小床垫。——大妈不会聪明到为了把房子租个好价钱而特地买个大床,她不知道,如果她买张大床,很多人愿意多出200块钱把这房子租下来,押一付三,增加的租金立刻抵消了大床的成本。可见,把数学应用在生活中有多么重要。
第六步:运筹帷幄。
当你现场看过的房子数据比较充裕时,就会追求卧室里是不是有书架、洗手间是不是通风良好这样的指标了。达到这个水平时,再看两三家就够了。
看到再好的房子,也别当场定下来。一时的感觉有可能是假相。尤其是在你看了超过十间房时,你已经分不清哪间是哪间了。你可能看一间觉得满意,看到下一间又觉得满意。这时,你需要问一问房东,能不能拍张照片。告诉她你要多比较两家,这样,她还会自动给你压低房租。不然,她会以为你不是一个人来住。当然,你也可以告诉她你是发给你妈看,但那样似乎有点丢人,毕竟你都三十岁了。
通情达理的房东一般都不会拒绝你。拒绝你的房东,你要考虑是不是要住在这里,因为和他们的相处恐怕容易起芥蒂。要求拍照片是检验房东性情的好办法。
拍了十多家房间的照片,就可以去吃饭了。因为你饿了。找一家麦当劳或者肯德基吧,可惜肉全没有了。你痛恨自己累了一下午还不能吃饱。但要记住,你此行的目的是找房子,不是吃。
要一杯饮料。把看过的房子一一列在纸上,打开照片,比较其优劣。你假如会用SWOT分析法更好,PEST就不用了,装逼也需要有限度。
然后,你就得到一张近似下图的列表。
先排除一半,再从未排除的选项里选优,就确定了一个候选房。
别着急,你还需检验一下它是否有效。不必做robust检验,只需在你未曾涉足的小区观察两套房有个比较就行了。一般不会优于之前的最优解。
然后,你打电话给最优解姐姐。交了定金,就可以愉快地打道回府了。
你共拨了40多通电话,逛了5个小区,看过16间房。加上吃饭,花了5个小时。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22