从大数据中创造价值的关键,在于选择合适的工具来迁移与储存资料,进而有效地发掘新洞察。为了将这些洞察转换为可执行的营运策略,新资料必须能与现有的资料、基础架构、应用程式与流程安全地整合在一起。甲骨文最新发表的解决方案能无缝地协同运作,协助企业以更低成本、更少风险,更快地发挥企业大数据的效益。这些解决方案能让客户安全地存取Hadoop、NoSQL和关联式资料库,以便轻松、并具成本效益地分析大量且多样化的资料集(data set)。
IDC 商业分析研究副总裁Dan Vesset表示:「单一技术将不再足以支援所有的分析使用情况,此外,若将资料管理与分析视为无关连性的专案,将会导致难以管理IT的困境并面临不必要的风险;IDC预测,到2017年前,统一的资料平台架构将成为企业大数据与分析策略的基础,这种统一化的趋势将出现在资讯管理、分析、和搜寻技术等层面。」
甲骨文大数据部门副总裁Neil Mendelson表示:「资料已成为一种新形态的资产,企业必须策略性地投资其资料资产,以创造最佳的投资回收。甲骨文提供一整合式平台,协助客户简化所有资料的存取、发掘新洞察、实时(real-time)预测成果,并确保所有资料的有效管理与安全性。」
甲骨文最新大数据解决方案亦可无缝运作于日前发布的Oracle Big Data Appliance X5和Oracle Exadata Database Machine X5上。这些解决方案结合在一起,可为企业提供一完整、具成本效益的平台,以便存取、发掘、管理、保护、进而实现大数据之价值。
最新发布的大数据创新方案包括:
● Oracle Big Data Discovery:这是「Hadoop 的视觉呈现」,并是一可集发现、探索、转换、发掘以及分享大数据洞察为一体的端到端产品。大数据资产可被组织内更多的商业分析师所使用,因此能降低风险,并缩短大数据专案创造价值的时间。
● Oracle GoldenGate for Big Data:以Hadoop为技术基础,让客户从异质交易型系统实时串流非结构化资料到大数据系统,包括Apache Hadoop、Apache Hive、Apache HBase以及Apache Flume。透过将既有的实时架构纳入大数据解决方案中,Oracle GoldenGate for Big Data协助客户强化大数据分析的专案项目,并确保大数据库能与生产系统同步更新。
● Oracle Big Data SQL 1.1:拥有与甲骨文资料库一样的安全性,这是一种可将Oracle SQL扩展至Hadoop和NoSQL的技术。透过一条Oracle SQL语句的快速查询,即可通透地存取Hadoop、NoSQL和Oracle Database中的资料。Oracle Big Data SQL 1.1可为Hadoop和Oracle Database提供更紧密的整合,查询性能较之前的版本提高40%。
● Oracle NoSQL Database 3.2.5:这套具调适性的解决方案,能让开发人员建立高效能的新一代应用程式。此最新版本具备可预测的低延迟、RESTful API、和基于Thrift的 C API,并与Oracle Big Data平台整合在一起。以Oracle Big Data SQL为基础,Oracle NoSQL Database 3.2.5亦可支援资料定义语言(DDL),因此能更容易地使用SQL来查询NoSQL资料。
Oracle Big Data Discovery现已正式上市
Oracle Big Data Discovery可充分发挥Hadoop的强大功能,使用者能快速、轻松地将塬始资料转换为可执行的商业洞察。
● 如同线上购物般轻松地探索大数据:Oracle Big Data Discovery具备绝佳的视觉介面,能在Hadoop中发现并探索塬始资料。类似于便条纸一样,它可揭露资料属性与资料组合之间的统计关联性,进而可评估此资料集是否具有潜能并值得进一步的研究与资源运用。使用者可透过熟悉的指引式导航与强大的搜寻功能,轻松浏览互动式的视觉资料目录。
● 大规模地转换并增强资料:Hadoop 中的塬始资料在进行分析前需先准备就绪。透过直观、类似试算表的使用方式,Oracle Big Data Discovery可降低耗时的准备周期并简化资料矛盾,使用者无需改用其他的工具或撰写程式码,即可增强资料的可视性,让更多的时间投入在资料分析上。
● 发掘和分享以发掘新价值:资料发掘与分析使用的工具与资料准备不同。Oracle Big Data Discovery可协助使用者无缝地从准备工作迁移到资料分析,并可一键分享资料洞察。使用者能就资料产出的结果强化合作,将塬始资料集传回 Hadoop,并在Pig、Hive和Python等其他工具上进一步运用资料结果。
● 将大数据开放予更多人使用:大数据常仅被一些非常专业、收费高昂且少数的资料科学家所使用,Oracle Big Data Discovery能让大数据更容易管理,使包括分析团队与商业使用者等更多人员轻松地运用大数据。它可与既有的大数据工具整合,让企业轻松地扩大其大数据团队,充分发挥企业的人力资本、并从资料资产中获得最大的效益。
支援性资源
● Big Data Discovery:创造价值的五个步骤
● 透过Facebook、Youtube、Twitter了解 Oracle Big Data Discovery
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20