Yahoo的大数据分析的个人化应用_数据分析师培训
大数据(Big Data)近年来已成为市场关注焦点,为了能够发掘大数据的商业价值,在基础建设已经渐渐完备,数据搜集及储存能力已然成熟的环境下,大数据应用的探索焦点,已逐渐从数据技术与系统的讨论,逐渐转移到数据的分析与各领域的深化应用。
如目前的入口网站早已是许多人日常生活不可或缺的服务提供者,透过使用者在使用入口网站服务的行为分析,业者不但可以更进一步地提供个人化推荐服务,还可能为相关业者找到更多的商机。
但并非所有的数据都能产生价值,必须透过很多生态系统搭配组合,才能产生用户所需要的资讯。
大数据已成市场关注焦点。数据的确需要去开采,也需要技术及工具,但技术及工具也可能会用错或浪费资源,所以技术人员不能只看技术,而是要去理解数据真正的价值所在。
如健康照护服务及定位数据如果加以混搭,虽然可以提供更进一步的价值,但如何说动使用者开放或分享,其实需要更细致的说服过程。此外,大数据分析所呈现的世界,客户需求会更加清晰,但市场区隔也会变小,产品及服务必须要更加客制化。
随着无线网路、行动装置及物联网的时代来临,人与物的连结将变得更加多样化,也创造出更多各类型的数据,如何管理、维护及分析这些数据,并将正确分析的结果即时传给正确的使用者,创造更多的商业价值,势必将成为企业未来非常重要的竞争力,大数据分析的价值,值得加以重视。
大数据分析的个人化应用
网际网路基础建设渐趋成熟,加上行动装置的便利性及普及,让许多人的日常生活行为,已经离不开网路,其中又以入口网站接触到的使用者最多,也成为大数据的最主要来源。
如Yahoo提供的诸多服务,如电子信箱、购物、新闻、理财等,都可以追踪到消费者的足迹,加上使用者其他的网路使用行为如点击广告等,以及全球每月可收集超过16亿只智慧型手机及平板电脑上的使用者行为,如何进一步分析这些个人化应用,已成为重要议题。资讯及选择太多,其实也是大数据分析所遭遇的一大难题,以Yahoo所能追踪的消费者使用足迹为例,就会发现其实跟一般官网可以追踪的足迹不太一样,由此也可知,大数据与一般数据其实仍有差别,不能用同样的思考或方法来分析。
大数据具有5大特性,包括数据量(volume)、速度(velocity)、多样性(variety)、易变性(variability)及真实性(veracity)。其中数据量、速度及多样性这3项是一般较常用来评估大数据的标准。
由于使用者平日在网路的应用习惯,举凡使用搜寻引擎、即时通讯、看影音节目、气象、听音乐、购物、社群活动、上传相片、电邮及阅读新闻,Yahoo都有提供对应的服务,其中光是使用者接触到的媒体内容、电子商务及数位行销广告的使用行为分析,就可以产生非常大的商业价值。在分析大数据时,Yahoo一定会做好个人隐私保护,只有行为数据才是真正可以分析的行为。例如,光是早餐的麦片种类就超过70种,往往会造成消费者选择的困扰,但如果透过适当的使用者经验分析,就能提升使用者的正面体验。
以一个小资女班族的日常生活为例,早上在搭捷运上班途中,打开手机看新闻,透过大数据分析,就会优先提供这位使用者平常阅读的影剧新闻、近期因为想要旅游而常关注的旅游文章,以及最近热门浏览的财经新闻。
透过大数据分析使用者行为,也能让使用者得到更多相关资讯。如使用者在点击购物中心84折运动的资讯时,网站就会提示使用者之前看过的那些商品,其实也适用此活动。
甚至在使用者因为点选了广告推荐的日本秋季赏枫行程,个人化推荐模组就会显示超级商城的冬季新装长大衣,或是日本零食、美妆等商品资讯。而且当使用者下班后经过药妆店时,超级商城App也会提供有限定商品折扣的讯息,而且凭App产生的条码,到店购买就可享有第二件7折优惠。
Yahoo首页每天分析超过1亿个以上的网路使用行为,才能提供使用者最感兴趣的互动,而且使用者的网路使用行为愈多,Yahoo提供的资讯也会愈精准。
而对厂商而言,精准行销广告本来就会有提高广告投资效益的效果,如果能根据使用者行为,在首页出现相关的广告,或提示相关的行销活动,抓到使用者的需求,销售将会成倍数成长,尤其是个人化模组的促销量,效果又会比网站推荐模组的效果更好。
针对电子商务,Yahoo台湾团队自主研发演算法与归纳消费者行为模式进行分群,透过数百群产品推荐模组,提供更优质的个人化服务,让购物中心来自个人化推荐模组的业绩显着增加。电子商务方向的大数据分析经验,发现使用者对于即时性的要求很高,也就是说,使用者的任何行为,要在10几分钟后就能完成分析,提供进一步的建议。
要做到前述的使用者行为分析,其实需要各种数据分析技术支援,如分析消费者各类行为与需求的预测模型,也要有能力即时侦测互动事件,并回馈产生最佳的个人化服务内容,而具备一个能够从互动产生的大数据中,快速地搜集、储存、撷取、汇整与计算的大数据分析平台,更是其中的关键要素。
大数据分析平台的运作过程,必须先要有数据来源,然后透过Hadoop、Shark及SQL等技术,很快地完成数据分析处理,最后再将结果储存并展示在使用者的面前。此外,大数据要做到个人化分析应用,科学建模(Science Modeling)的重要性不言可喻,科学建模依据的数学或科学理论,透过雅虎的实际工程(Practical Engineering)及适应学习(Adaptive Learning)能力,可以具体实践出成果。大数据分析要做到个人化应用,批次讯号及即时讯号的分析技术,两者无法相互替代,必须相辅相成,再透过分群数据技术及个人化引擎,最后才能提供为使用者个人量身订做的专属建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13