环境大数据互联时代将到来_数据分析师培训
近年来,互联网为解决环境问题创造了前提条件。通过互联网的应用,可以实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。公众舆论借助互联网将对企业排污形成巨大压力,督促其有效治污,也将推动环境改善因素由单一政府向全社会延伸。
预计在互联网的影响下,环保领域将迎来一个大数据互联时代。
线上线下有效互动
环保物联网覆盖范围将扩大,人人参与的大环境形成
目前,我国已经基本建立起了污染排放监控体系,特别是对于国控、省控、市控重点污染企业。然而,这些数据的真实性、有效性、公开性却一直受到不同程度的质疑。
随着信息技术日益完善普及,特别是新《环保法》的实施将为有力打击环境违法行为提供重要法律支撑,使“线上数据+线下执法”的模式配合大有可为。在推动环境改善驱动因素由单一政府向全社会延伸过程中,环境相关信息及数据的价值将得到显现。
一方面,预计未来除现有重点污染企业之外,大量“漏网之鱼”将逐步纳入监测体系并进行全面监控,环保物联网覆盖范围有望显著扩大。而来自民间的环境信息也将通过移动互联网等渠道大量涌现,使环境大数据具备坚实基础。与此同时,实施数据打假及信息公开并为后续执法提供更强支撑。
另一方面,预计未来建设环境监察移动执法系统的机构以及执法人员比例都将大幅增加,从而实现公众、企业、执法单位从线上到线下的有效互动,形成人人参与的环保大环境。
环境质量得到更多关注
多渠道信息检验治污效果,排污企业将改变 “验收导向”方式
今年以来,无论政府层面还是公众方面,在总量减排的基础上,更多提出环境质量的改善。相关指标有望逐步取代单一的污染物减排数字,成为“十三五”以及未来中长期环境规划的重要导向。
因此,从多渠道获得的环境质量数据,有望成为检验治污工程是否真实有效的关键考量。排污企业也将改变传统“验收导向”思维方式,更加倾向于选择具备技术和资金优势、能够真正解决问题的环境服务商。
大数据来源有哪些?
环境质量、污染源排放和个人活动信息将通过互联网互通共享
环境领域将迎来一个大数据互联时代。若要全面呈现环境问题,尤其需要通过互联网实现环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。具体来看,目前主要存在以下3种与环境相关的数据来源:
第一,环境质量。这是指外部自然环境质量表征,典型数据信息包括大气、地表水、水资源、土壤、辐射、声、气象等环境质量,通常由政府及有关部门(如环境保护部)公开其制作或获取的环境信息。
基于已经建立起来的以国控、省控、市控3级为主的环境质量监测网,形成信息公开机制,初步勾勒出了我国整体环境质量状况。比如,全国城市空气质量日报/时报(367个城市)、全国主要流域重点断面水质自动监测周报(145个监测断面)、全国辐射环境自动监测站空气吸收剂量率(44个站点)等。
第二,污染源排放。这是造成环境污染的核心原因,具体体现为废水、废气、固废、放射源等形式,主要包括污染源基本情况、污染源监测、设施运行、总量控制、污染防治、排污费征收、监察执法、行政处罚、环境应急等环境监管信息。
《全国污染源普查公报》中的排污数据及信息,将是政府监管以及公众监督的重要前提与基础。目前,各地正逐步落实环境保护部出台的《关于加强污染源环境监管信息公开工作的通知》等文件。以北京市为例,虽然已按季度发布国控企业污染源监督性监测情况,而27家重点排污单位和上市企业仅于今年起初步实现自行监测信息对外发布,实时信息公开仍无法实现。
第三,个人活动产生的与环境相关的数据信息,如用水量、用电量、生活中产生的废弃物等。尽管这些数据拥有巨大的潜在价值,但其分布却呈现天然的分散状态,互联网特别是移动互联网的快速普及应用正在使上述信息的收集利用变得可行。 作者为中信证券公用环保行业高级分析师
相关报道
为传统环保企业开辟新渠道
江苏吴中建立环保产业O2O平台
中国环境报见习记者 韩东良 苏州报道 记者日前获悉,江苏省苏州市吴中区将建立环保产业O2O平台(即Online线上网店Offline线下消费电子商务平台)。
据了解,中能泰可网络科技(苏州)有限公司将打造集环保产业的O2O全球展示交易、环保会展服务、环保技术交流、环保综合服务、电子商务运营、人才培训、仓储物流、金融服务及其他配套服务于一体的大型一站式环保产业O2O平台。O2O平台是指把线下的商务机会与互联网结合,为传统的环保企业开辟新的市场渠道。
截至目前,来自全国的50多家环保企业达成了初步意向。预计到今年7月,入驻的环保企业将达到2000家左右。未来,平台还将聚集一批在绿色能源、绿色建筑、绿色交通、环境安全、环境治理、环境健康、清洁生产、新材料、资源循环利用、环境信息产业、环境综合服务等领域具备先进技术和创新服务机制的企业和环保综合服务机构。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28