社会化媒体与大数据爆炸时代的营销
大公司有关消费者的数据已经达到200T,在社交网络流行的背景下(Facebook、Twitter、Foursquare、Pinterest、Instagram)社会化媒体数据更是如洪水般泛滥,数据大爆炸已到达失控的地步。
如何处理这些数据?如何存储?如何行动?如何分析利用?交易数据、个人信息等结构化数据还好说 ,这些传统的分析工具尚能够应付。但社会化媒体数据基本上是非结构化的数据,所以很难分析。也没有标记系统让我们通过分析工具来利用社会化媒体数据。单靠个人是无法分析这种规模的数据的。
新的形势需要靠训练有素的团队来利用社会化媒体数据。这个团队应该像一支管弦乐队一样。要有一个指挥来制定社会化媒体计划,这名指挥应该熟悉公司的各种流程。但是这位指挥如何才能够知道何时改变策略、何时作出相应行动,何时解除行动,如何确定Facebook上面的“like”对于品牌的意义是什么?如果在社会化媒体网站上面请消费者帮助开发新产品,是不是有手段能够真正分析其提供的信息并概括出有助于推进研发的要点?还是说这一系列的问题最终都没有答案—就像大多数的数据一样,只是被存了起来却没有被好好利用。
过去大部分数据都是结构化的,所以可以分析和利用。但社会化媒体数据完全不同,用户跟品牌的交互是在自己的社会化媒体模式驱动下进行的。社会化媒体属于一种独立的营销领域,甚至跟网站都不一样,属于一种在兴奋作用下的口碑传播。
此外,现在消费者跟品牌的交互方式越来越多是通过移动社会化媒体,在本地化的层次上进行的,这又给数据增加了一个维度。有多少公司在消费者从“喜欢”你的品牌转向利用品牌创建的app观看品牌电视广告然后拿起电话给客户服务致电时跟踪过消费者并分析其行为呢?这就是消费者跟品牌的交互方式,这么多的步骤往往几分钟之内就完成了。
但是,即便消费者已经无缝地转移到这个移动社会化媒体世界里,Organic还是处于有针对性地部署员工的早期阶段,更不用说分析社会化媒体数据了。现在Organic专门雇人跟踪Facebook的内容,并且把他们的1-800外包给了印度。对于来自社会化媒体的数据洪流以及这些数据如何与其他的客户跟品牌公司接触点相关联,我们需要有一个健壮的系统来进行分析(Organic已经为此开发了Connection Index)。
如果希望让这些数据物尽其用,就得不断地给营销队伍增加技术人员。数据库管理需要一个能干的人手才能把所有的数据都转化为能够分析的形式。还有,能够理解数据及其影响的统计分析人员也不可或缺。要有熟练掌握行为数据的人。从社会化媒体接收到的数据跟此前采集的静态的、事务性数据是很不一样的。社会化媒体数据是非结构化的、流动的、移动化的,而且往往是相互矛盾的。此外,还需要雇用懂得如何对这些数据进行标记的人,把它们结构化以便统计分析人员和数据库专家能够加以研究,再让营销人员将其转化为可行动的品牌战略。
这项任务不能够扔给传统上负责社会化媒体的营销人员。仅仅得出一个结论说YouTube上有了1000万的展示量已经不够了。这只能够反映有人在唠叨你的品牌。很快CFO就会要求说社会化媒体渠道也要有ROI(投资回报率)。如果你没有完成销售目标,财务不会关心有没有人在YouTube上看你的视频或者把你添加到自己的Pinterest板墙上。没有收入,絮叨就只是絮叨而已。
为了满足这些ROI的要求,需要把社会化媒体转化为可以指导行动的数据,否则的话,最终就只会伤害品牌而非帮助品牌。营销活动的圣杯一直都是创造出有实用价值的感情投入。社会化媒体有能力将消费者与品牌以比最好的口口相传还要好的效果联系到一起。但是我们还是需要知道那些感情是不是被转化成了利润。
Ps.此文是Omnicom Group旗下的数字广告代理部门Organic(Organic的客户包括Kimberly-Clark、克莱斯、美国运通、索尼 PS、Sprint及二十世纪福克斯公司等。)的CEO Marita Scarfi的一篇文章,里面谈到了社会化媒体对营销活动的影响以及新形势下的要求,此文有助于了解广告公司在新形势下应该如何运作营销活动。
数据分析咨询请扫描二维码
数据分析工具推荐 数据分析工具的选择至关重要。不同工具适用于不同的需求和场景。以下是一些推荐的数据分析工具,根据您的需求 ...
2024-11-27选择适合您需求的数据分析工具 数据分析作为商业决策过程中的关键环节,工具的选择至关重要。不同的工具适用于不同的场景和需求 ...
2024-11-27数据架构文档的编写涉及多个方面,包括内容结构、编写原则和具体要求。遵循规范可以帮助团队更好地理解和管理数据架构,支持项目 ...
2024-11-27挑战与解决方案概述 在数字化时代,数据开放共享对于推动创新和发展至关重要。然而,这一进程面临诸多挑战。保护用户隐私、确保 ...
2024-11-27促进科学研究和创新 数据开放共享为研究人员提供更广泛的资源和合作机会,加速科学知识的发展。通过访问他人的数据集,验证研究 ...
2024-11-27数据组织与存储策略 数据模型是数据仓库和商业智能系统的核心,通过合理的数据组织和存储策略,确保高效、低成本、高质量地利用 ...
2024-11-27持续关注数据系统运行状态 - 数据设计与开发完成后,维护与优化工作成为至关重要的环节。这个过程需要持续且细致的关注,以确保 ...
2024-11-27数据服务未来的趋势 智能化和自动化: 随着人工智能和机器学习技术的飞速发展,数据服务领域正逐渐朝着更智能化和自动化的方向 ...
2024-11-27未来最有前景的行业主要集中在以下几个领域: 人工智能与机器学习:人工智能被认为是未来最具潜力的行业之一,其应用范围广泛 ...
2024-11-27根据多条证据,目前多个行业展现出良好的发展前景。以下是一些被认为具有最好发展前景的行业: 人工智能与机器学习:人工智能 ...
2024-11-27学习数据分析后,可以在多种类型的单位找到工作机会。这些单位包括但不限于: 政府机关:数据分析师在政府机构中扮演重要角色 ...
2024-11-27必备的职业技能 统计学基础 - 理解概率、假设检验、回归分析等统计概念。 - 运用统计方法对数据进行分析和解读。 编程能力 - 掌 ...
2024-11-27基础课程 - 统计学基础: 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识。这有助于分析师更好地理解数据背后 ...
2024-11-27数据分析领域涉及众多工具软件,涵盖了从数据处理、分析到可视化的各个方面。在选择适合自己需求的工具时,需要考虑数据规模、分 ...
2024-11-27在数据分析领域,选择合适的工具至关重要。不同的软件适用于不同的需求和技能水平。以下是几款值得考虑的数据分析软件: - Table ...
2024-11-27数据分析中常用的Excel与Python函数公式涵盖了广泛的应用场景。掌握这些基础和高级技巧对于成为一名优秀的数据分析师至关重要。 ...
2024-11-27Python是一种高级编程语言,由荷兰程序员Guido van Rossum于1989年圣诞节期间开始开发,并于1991年首次发布。Python的设计哲学强 ...
2024-11-27课程内容 数学基础: 高等数学、线性代数、概率论与数理统计、微积分等为算法设计和数据分析打下基础。 编程与算法: 掌握 ...
2024-11-27爬虫工程师是互联网时代中至关重要的职业之一,他们的工作内容主要涉及编写和维护网络爬虫程序,进行数据采集与清洗,设计系统架 ...
2024-11-27技能需求 数据管理与建模 - 掌握SQL、HiveQL、Spark SQL等数据库语言,进行复杂数据查询和分析。 - 使用数据建模工具如ER/Studio ...
2024-11-27