sas快速处理大数据的使用技巧
用sas在做数据分析时,有很多朋友会遇到和我一样的问题吧,数据分析师在这里分享一下。1.测试代码的时候,可以从大数据集中抽取一部分数据来进行测试,而不比直接在大文件上全部进行测试。抽取数据这个有好多种方法常用的如使用obs=option选项,proc surveyselect进行分层抽样,利用种子产生随机数来抽取等等,反正怎么方便怎么取。如
或者
2.每个数据集最好只保留自己想要的变量,变量太多是会影响效率的,所以无关变量可以drop掉,或者keep想要的变量。
3.在对符合已知变量条件的记录进行处理时,果断先进行筛选,然后在进行处理。同时在 Data步建立新数据集,在进行的条件筛选中,where的效率比if高,因为where在读入的时候就已经进行判断,而if则是等到全部读完的时候才进行判断。如需对class数据集中的男生建立一个新变量weight_new,以下这种写法是不可取的。数据分析师培训
可以这么写
4.一些能省略的data步,如先经过data步进行简单的条件筛选,然后进行proc步的一些操作,诸如此类的data步,尽量省略吧。
完全可以这么写
5.需要修改数据集变量的label和format格式时,还是通过proc datasets过程进行修改效率比较快,它不需要记录进入pdv,比起data步更有效率。
6.纵向合并数据集时,如果生成的目标表就是来源表之一,那么proc append会比data步更有效率。
proc append和proc datasets中的append过程效率是一样的。
7.对于大数据集,一般都会讲数据集压缩,以节省存储空间,sas里可以通过options compress=yes;来进行压缩。
8.如果我们想要查看一个变量顶部5%的记录,可以通过proc rank一步实现,而不需先通过univariate过程先将p95分位数求出,然后赋值给宏变量,最后再回到数据集中筛选。
9.在编写一些proc步时,对于分组变量最好是用class而不用by,因为用by是得对分组变量进行排序的。
10.视图的应用。视图是一个虚拟表,其内容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查询所引用的表,并且在引用视图时动态生成。所以视图能够节省大量的空间,同时因为它不是以存储的形式存在,因此在一定程序上能够提高运行效率。如对生成的数据集进行means过程
对比之下,我们可以看到视图比起数据集将近节省了10秒。但是引用视图的时候要注意,视图的名字能够覆盖视图的名字,但是它不能覆盖数据集的名字,因此建立视图的时候,不能存在跟视图一样名字的数据集,否则会报错。同时,如果视图的名字存在,再要建立同样名字的数据集也是会报错。
11.format格式数据集的引用。比如说在信用卡交易数据集,每天的交易量都是很大的,同时包括境内境外交易,这时就存在币种转换问题。一张交易量很大的表,和一张币种汇率表,这时如果通过币种去连接两个数据集,首先得先对这两个数据集按币种排序,然后merge进行计算,当然有人想到直接用sql连接,不过这样消耗时间也都是非常大的。这时候就可以先将汇率表做成format的数据集形式,到时就可以直接使用了。如
注意format数据集的地址,如果非work逻辑库下,则需要加上这么一句话options fmtsearch=(逻辑库名称);
12.将数据集载入内存。该方法减少数据集内存分配和释放的次数,降低I/O处理量,提高SAS程序执行效率,但是相当消耗内存,需要确认系统有足够多的内存资源,同时在使用完后,要记得释放。具体形式如下
13.hash的应用。在data步中使用hash对象,不但可以快速有效地检索和读取数据,还可以实现数据集merge的功能,从而减少排序时间,提高了数据处理的能力,相对于merge,hash的效率更高,但是同时也很消耗内存,因此一般都是把小表放进hash中。如用前面汇率进行币种的连接
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21