大数据创业需要跨过几道坎_数据分析师
这篇文章考虑了很久也没下笔,一方面想写得干货一些,一方面又想写得引人入胜一些,纠结来纠结去,终于决定还是以一个中立的用户角度去写,尽量写得大众化一些。
2013年5月10日,在淘宝十周年晚会-马云退休演讲中,马云说:这是一个变化的时代。还有人没搞清楚PC,移动互联网来了;还没搞清楚移动互联网,大数据来了。而变化的时代是年轻人的时代。
马云说的这句话很关键,他不仅提到了大数据,而且更是用一句话阐述了互联网从PC时代,进化到移动互联网时代,然后从移动互联网时代进阶到了大数据时代。有几个关键点很重要:PC时代,全球催生了大量的互联网上市企业,包括谷歌、亚马逊、新浪、搜狐、新东方等等;
移动互联网时代,中国创业热潮风生水起,不仅有大量的移动互联网(包括手游)企业赴美上市,更是诞生了无数个创业奇迹。移动互联网不仅为我们的生活带来了便利,更是把创业热潮推向了历史最高峰。
现在问题来了,大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?大数据时代如何创业?大数据创业的门槛又有哪些呢?
先回答第一个问题:大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?
据我了解,不是。走在中关村创业大街上,你能收到的100份融资BP里,可能有99份都是APP和O2O项目,但99家里90%以上会重视大数据。
那么大数据时代如何创业呢?请先了解一下大数据的创业门槛。
门槛一:数据
大数据大数据,没有数据怎么玩?那么数据从哪里来呢?
像百度、腾讯和阿里巴巴这样的BAT企业,本身就积累了大量的数据,所以他们玩起大数据来,多半是“闷声发大财”。当然了,也可以说几句BAT企业玩大数据的例子,比如说百度旗下的“百度迁徙”、“百度精算”、“百度舆情”、“百度大数据预测引擎”等等,都是百度的大数据产品应用;阿里巴巴的话,“阿里云”、“支付宝-花呗”、“支付宝-借呗”“芝麻信用”、“蚂蚁金服”等等,都应有了大数据技术。而腾讯方面,“腾讯广点通”、“腾讯云分析”和微信等也都引用了大数据技术。
尔等屌丝没有数据,如何玩呢?
首先,你可以通过第三方购买数据,比如说,数据堂就有很多数据出售和分享;
其次,你可以用爬虫爬回一些数据来存储;
再者,通过给企业、开发者、站长等等授权使用大数据工具来积累数据。这方面的新创企业包括Talkingdata、友盟和DataEye等。
最后,使用免费的政府、企业、和机构开放数据。比如说高德数据的API接口和微博商业数据API接口等等。
总体来说,解决好数据源是大数据创业的必要门槛。关键看你创业的项目是什么。
门槛二:硬件
在北京,我曾经参观过一家大数据初创企业,当时他们还没有拿到融资。我去他们的办公区发现一幕特别心酸的事情。他们的员工挤在一间很小的屋子里办公,而两件较大的屋子都用来安放大数据存储服务器。大数据的存储量是很惊人的,这对机房和硬件设备也提出了新的挑战。
这一点和移动互联网不太一样,你做一个APP,用电脑搞开发,服务器用云服务器就行,按需购买。但是大数据不行,你没法把自家的数据存储在别人的云服务器上,一方面是安全因素,另外一方面也有产权因素。硬件也是大数据创业的门槛之一,但不是最大 的门槛。顺便补充一句,我曾经参观过的那家大数据新创企业,目前已完成百万美元的A轮融资,现在他们家的办公区特别宽敞,恭喜星图数据。
门槛三:人才
我认为大数据创业的最大门槛在于人才。和做APP不一样,大数据创业你一个人乃至几个人都是没法玩转的。初创企业你就往10-15人这样的团队先招人吧,这样的团队要包括Hadoop工程师、算法工程师,数据建模工程师、架构师、NoSQL工程师、BI工程师等等,全都是技术要求较高、薪资要求也很高的人才。大数据人才有多贵?在美国,在R、NoSQL和MapReduce方面需求的专业人才薪水达到了每年约11万5千美元,在中国也便宜不到哪里去,没有年薪30万,你很难招到一个大数据人才。
据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。也就是说,技术很牛的大数据人才,他的选择面很宽,要么早就进入BAT企业,要么也是在不错的企业拿着高薪,你要挖这样的人才,除了钱,股票、期权、福利等等,都是必须付出的代价。
2015年-2016年是大数据人才最为匮乏的两年,原因很简单,各大刚刚开通了大数据科目的院校,学生还没毕业;而招聘市场上的大数据人才需求量远远已经供不应求。除了BAT企业,通信企业、电力企业、金融银行行业、医疗行业、工业、游戏行业等等,哪个行业不是都在招大数据人才?创业公司要在这么严峻的人才环境中找到适合自己的大数据技术人才,门槛可不止是钱。
门槛四:技术
说了人才,就要说技术了。大数据技术不是你懂C++或者R语言就够了的,大数据有一整套自己的技术体系,包括统计、编程、JAVA、数据库、Hadoop、Spark、NoSQL、机器学习、自然语言处理、算法、数据可视化等等技术。光是Hadoop需要用到的技术和编程语言就有很
多项。而且市面上的大数据工具每家用的还不一样,用开源软件(如Hadoop、Spark)或者用SAP(SAP HANA)需要的技术也不一样。技术要求较高,而拥有大数据综合技术的人才又较少,这也成为了制约大数据创业的最大问题。
门槛五:钱
其实我不想写钱,但是又必须写钱。大数据行业创业不缺资本,只要你创业项目的商业模式没问题,并且技术能力强,且团队靠谱,无论在中国还是在美国,融个A轮还是没有问题的,资本关注度很热。但是你在拿到融资之前,自己启动的资金就需要一大笔。人才、硬件
和技术成本都较高。
这么理解吧,如果说,几个好朋友凑50万花3个月可以做一个APP项目,那么要在大数据行业创业的话,请先准备600-800万再来玩。
门槛六:商业模式
中国互联网上最赚钱的行业是什么?我认为是电子商务和网络游戏。电子商务和网络游戏也是互联网变现最快的行业。而大数据,它的变现能力不如网络游戏和电子商务那般简单直接。在我拜访过的很多企业中,他们手里有钱、有数据、有人才也有技术,但是他们不知道自己手里的数据可以拿来做什么。
也就是说,大数据目前没有最明朗最直接的商业模式。大数据只有和业务场景结合,才能产生价值。
大数据就像石油原油一样,你知道它在哪里,你可以开采它,但是开采出来你还需要冶炼,并且经过减压蒸馏、加氢精制、溶剂精制、溶剂脱蜡等炼制过程,成为成品油后运送到各个加油站,让汽车加满油后产生了动力才实现最终价值。大数据也一样,需要一整套复杂 的过程才能实现商业价值。
那么你可能会问了,大数据交易算不算是商业模式呢?我个人觉得,要看交易的是什么东西?原始的非结构化的数据,后面数据清洗需要太多的工序,数据存储也是很大的成本,这样的交易代价太高。我相信无论是企业用户也好,还是个人用户也好,大家更倾向于购买“拿来就能用”的大数据数据源。
你说京东和腾讯完成首笔大数据交易,我觉得就是一个笑话,京东和腾讯的大数据不早就整合在一起了么?我用微信直接就能在京东购物,数据是互通的,何必交易?
所以说,大数据创业最难的还是在于商业模式的思考,如果你没有找到一条让大数据变现的渠道,那么千万不要忙着拉团队创业。大数据行业创业,光有idea是不够的,跑通整个商业模式才是关键。
回答最初的问题来,大数据如何创业呢?我认为是:
一、找到一个大数据商业突破口;搞清楚你要用大数据解决什么问题,你的用户是谁?商业逻辑是什么?
二、找到一笔启动资金;
三、最好自己就懂一些大数据相关技术。
四、找到几个可以与你同甘共苦的伙伴。
五、找到你的数据来源,最好是独家的数据来源。
事实上,其实我认为目前不要着急去做大数据项目,做大数据处理工具是个不错的方向,可以先从做BI(商业智能)、CRM、ERP系统开始,等你有了客户,有了数据之后,回转头来做大数据项目,会更加水到渠成。
下面回答两个大家经常问的问题:
大数据人才培训算不算大数据项目呢?我认为不是,它应该叫做培训/教育项目。
那么市面上那么多的大数据培训企业,选哪家好呢?
我的回答是,都不选。如果你是技术类应届毕业生,建议先找份实习的工作,找个靠谱的师父跟着学,一边做项目,一遍自学大数据相关知识,遇到不懂不明白的直接问师父好了。实践比学习更重要。如果你不懂技术,那么请先学习计算机基本编程技术,把C语言和C++ 等学会。学完再来想,自己到底还要学什么。
大数据培训不是针对没有技术的底层人员,而是需要一定的技术基础的。如果你的数据分析技术为0,那么可以先学好Excel,心急可吃不了热豆腐哦。
CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。课程内容主要是从理论-实操-案例应用步步进阶,能让学员充分掌握概率论和统计理论基础,能够熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并得出逻辑清晰的业务报告。培训后通过CDA考核认证,可获得CDA数据分析师LEVELⅠ资格证书,成为一名合格的”业务数据分析师“。数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13