IBM、SAS和SAP, 三大供应商引起的大数据预测
对于大数据预测分析企业有很多固定的选择。
美国市场研究公司Forrester刚刚发布了2015年第二季度对大数据预测分析解决方案。
也就是说,Forrester的分析师Mike Gualtieri和Rowan Curran他们评估的产品有很大的不同。
数据科学家更容易欣赏一些,而业务分析人员会喜欢其它的。
他们都可以用来准备数据集,使用统计和机器学习算法开发模型,部署和管理预测分析生命周期,这些对数据科学家,业务分析人员和应用程序开发人员来说都是工具。
General Purpose:
重要的是要注意有很多强大的预测分析解决方案提供商并不包括在这一块,但是这并不是因为他们的产品没有任何好处。
而Forrester特别关注“通用”的解决方案,而不是那些针对特定目的像客户分析,交叉销售,智能物流,电子商务等等。
作者还指出,开源软件社区推动预测分析成为主流。开发人员有一个丰富的API的选择范围,他们可以利用通过流行的编程语言,如Java、Python和Scala准备数据和预测模型。
不仅如此,根据报道,许多BI平台还提供了“一些预测分析能力”。信息建筑商例如:MicroStrategy和Tibco可以与R轻松集成。
BI解决方案的“开源”像Birt,OpenText和Tibco,Jaspersoft使R集成更简单。
Fractal Analytics, Opera Solutions, Teradata’s也提供有价值的解决方案,并指出选择购买软件。作者还指出,较大的咨询公司 Accenture, Deloitte, Infosys 和 Virtuasa 都有预测分析和大数据实践。
总的来说,Forrester观望着13供应商:Alpine Data Labs, Alteryx, Agnoss, Dell, FICO, IBM, KNIME, Microsoft, Oracle, Predixion Software, RapidMiner, SAP and SAS。
Forrester的选择标准最一般意义上的利率根据他们目前提供解决方案提供商(组件包括:架构、安全、数据分析、模型管理、可用性和工具,务应用程序)和策略(组件包括收购和定价,执行能力,实现支持,解决方案路线图,和销售增长率。)每一个主要类别有50%的比重。
Leading the Wave:
IBM、SAS和SAP 三个值得信赖的供应商——领先这Forrester的眼界:
IBM完美实现了标准:数据,可用性和工具、模型管理、执行能力,实现支持,解决方案路线图和首选市场增长率。“与客户产生的见解从数据集的数以万计的特性,IBM的预测分析有权承担真正大数据和关键的见解”。IBM不足在哪里?主要是在收购和定价的范畴。
SAS是预测分析的鼻祖,像IBM,它多次取得了完美的分数。有趣的是,它在所有分析供应商中得到了最高的分数。然而,缺点是通过其战略领域的销售增长率和收购和定价。这可能不是一个大问题到明年的话,至少如果Gartner这个最近MQ BI和分析平台上的领导人,他指出SAS意识到了这个缺点并会解决这个问题。
“SAP无情的投资分析回报”Forrester在其报告中指出。我们多次重申,供应商的预测产品包括一些时髦的差异化特性等分析工具,您不必使用数据科学家,只需要一个可视化工具,允许用户分析几个数据库,为SAP 的客户来分析大数据。
The Strong Performers:
RapidMiner的预测分析平台不仅包括1500多个方法预测分析生命周期的所有阶段,而且通过单击它们也可以集成到云。还有一个漂亮的“群众的智慧”特性,它帮助用户避开在过去犯的错误和更快的见解。的缺点是什么?实施支持和安全。
Alteryx需要痛苦的数据准备,这往往是最难和最悲惨的对一个数据工人的工作。他们还提供了一个工具,可以帮助数据科学家与业务用户通过可视化工具。添加到画廊,分析应用程序帮助用户与其他用户共享他们的数据准备和建模工作流程,建立一个公司需要什么带来可行的见解。Alteryx在数据、架构和安全,执行的能力,和销售增长率,有改进的空间。
Oracle作为一个强大的表现,尽管它并没有提供一个单一目的的解决方案。根据Forrester的咨询来看,相反Oracle SQL开发人员工具包括一个可视化界面允许数据分析师创建分析工作流程和模型。不仅如此,Oracle也为分析利用开源R,并修改了一些算法利用Oracle的数据库和Hadoop架构。
FICO,是的,Forrester的谈论信用得分,,已多年的经验在可行的预测分析并建立了一个解决方案,它的使用是光滑的和可用的。它可能是一个宝石为数据的科学家们不断构建和部署模型。FICO的市场提供了许多改进的数据空间和业务应用程序。
Agnoss旨在方便用于科学家忙于预测分析工具通过支持服务为发展预测模型和直观的界面。而解决方案中还提供了决策树,这个功能,有助于高级用户从树创建更复杂的模型。
Alpine Data Labs提供了“最全面的协作工具的所有供应商在Forrester中,而且还能使界面简单、熟悉用户的主流社交媒体网站” Gualtieri and Curran 在报告中写道。这一事实似乎并没有足够多的人购买高山Alpine的产品问题。这可能是收购和定价选项,在这里, Alpine在所有供应商中获得是最低分数。
Dell计划进行大数据和预测分析。收购获得Statistica时进入市场。戴尔在第二波供应商架构中获得了最低分数,所以有很多需要改进的地方。
Make Room for Contenders:
Microsoft 和 Predixion Software给市场带来一些别人没有的价值体系。
他们似乎芽等着开花结果。微软,就其本身而言,它最近收购了有其新的Azure机器学习以及革命的资产分析。不仅如此,该公司的市场范围和雄厚资产。微软获得的分数低于许多供应商但是它是可原谅的,因为它的大数据和预测分析的解决方案可能是最年轻的。
Predixion Software,根据Forrester的咨询来看,提供了一个独特的工具,即(MSLM),一个机器学习的语义模型,包转换,可以部署的数据分析和评分,Java OSGI容器。“这意味着用户可以嵌入整个预测工作流和应用程序”该报告说。
Plenty of Good Choices:
Forrester关键的研究表明,更多的类似用户现在可以获得“现代预测能力”,预测分析现在允许组织嵌入智慧和洞察力。
当然,分析师建议你下载他们的报告,事实上,这可能值得做。这是一个快速发展的市场和供应商在迅速升级他们的产品。
如果没错,组织最好的利用数据将赢得未来,然后使用正确的工具可能是一个重要的区别。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20