酒店管理如何请大数据帮忙_数据分析师
大数据时代,酒店经营管理的方方面面都离不开数据的支持,如何利用好这些大数据,掌握四个步骤即可。
大数据时代,酒店经营管理的方方面面都离不开数据的支持。看了开元酒店集团总经理陈妙强的《开采大数据金矿,集成分析是难题》一文,笔者深有同感。文章指出,目前对大数据的开发应用存在数据入口与集成、建模分析等难题,需要业界不断探索。为此,笔者想结合自身所学和工作经验,对酒店大数据建模分析作初步探讨。笔者以为,酒店大数据建模分析可遵循以下步骤:
一、建立酒店大数据模型分析体系与指标
目前,国内的酒店大都没有成熟的大数据模型可用。我们可以自行探索建立起来。这里要引入一个战略管理工具——平衡计分卡。这是源自哈佛大学教授卡普兰与诺朗顿研究院的执行长诺顿于二十世纪九十年代所从事的一种绩效评价体系研究。经过近20年的发展,平衡计分卡已经发展为集团战略管理的工具,在集团战略规划与执行管理方面发挥着非常重要的作用。
平衡计分卡需要设定四个维度的指标:财务、客户、内部运营、学习与成长。结合酒店经营管理的实际,我们不妨建立这样的指标:第一,财务指标,酒店GOP(营业总利润);第二,客户指标:客户满意率、老客户留存率、新客户拓展率、网络好评率等;第三,内部运营指标,每家酒店都可以根据自身实际设定各个运营部门的指标,比如房务部可以有RevPAR(平均每间可售房间收入)、餐饮部可以有餐饮毛利率、菜品出新率,工程部可以有能耗比率等;第四,学习与成长指标,如员工满意率、员工离职率、员工技能提升率等。所有的指标确定以后,整个大数据模型分析的体系框架就出来了。
二、采集指标数据,进行酒店大数据模型测试
这个步骤需要酒店用一到两年的时间进行大规模的指标数据采集,然后运用一定的数据分析软件进行指标数据间关系的测算。比如,客户满意率数据与酒店GOP数据有何关系,是否符合逻辑,当客户满意率上升一个百分点时,酒店GOP上升多少百分点;当客户满意率下降一个百分点时,酒店GOP又如何变化?
具体操作中,需要关注两个问题:第一,酒店的信息技术平台能否给予强有力的支撑?如果不能,首先要做的是提升酒店的信息技术平台,使之具备大规模的数据采集能力和分析能力。第二,特殊因素影响。比如酒店经营淡旺季的行业特征因素对数据的影响,以及特殊事件造成的数据变动异常。这些在做数据分析时,都是属于要剔除的非正常影响因素。
三、构建酒店大数据原生模型
我们积累了大量经过测试且符合逻辑的数据后,就可以用来进行建模了。构建酒店大数据原生模型,需要用到线性回归分析、方差分析、主成份分析、典型相关分析和聚类分析等方法,从而对应地建立起线性回归模型等。比如,酒店GOP数据与客户满意率数据之间如果存在线性回归关系,就可构建一个酒店GOP——客户满意率线性回归模型。
这里我们必须明确六种关系:即财务指标与客户指标的关系、财务指标与内部运营指标的关系、财务指标与学习和成长指标的关系、客户指标与内部运营指标的关系、客户指标与学习和成长指标的关系、内部运营指标与学习和成长指标的关系。每种关系都可构建一种关系模型。就是说,六种不同的关系模型共同构成了酒店大数据原生模型。我们知道,使用酒店大数据原生模型的最终目的就是服务于酒店的经营管理决策。有了这些模型,我们可以预测未来不同时间段的经营情况,以便采取措施对经营管理施加有利的影响。
四、再验证、再完善,形成稳定模型
原生模型的适用性是有待检验的。酒店需要再用两到三年的时间对原生模型进行再验证、再完善。如何实施呢?我们假定以酒店GOP——客户满意率线性回归模型为例。首先,采集一个季度的客户满意率数据,然后放入模型去计算酒店GOP的季度理想值,再将酒店GOP的季度理想值与酒店GOP的季度实际值进行对比,以验证该模型的准确度。如果准确度不高,就要分析原因,并对模型做进一步完善。如此连续做几个季度的测算、分析、调整、完善,即可形成一个比较可靠、有适用性的稳定模型。
上述四个步骤就是笔者对酒店大数据建模分析的一点粗浅认识。希望业界更多有识之士能进行不懈的探索,提出更好的思路。但有一点是肯定的,我们不可能毕其功于一役,每家酒店都需要不断完善大数据建模分析,它的未来之路永无止境
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28