什么是算法?
简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。(来源:homas H. Cormen, Chales E. Leiserson 《算法导论第3版》)
可以这样理解,算法是用来解决特定问题的一系列步骤(不仅计算机需要算法,我们在日常生活中也在使用算法)。算法必须具备如下3个重要特性:
[1] 有穷性。执行有限步骤后,算法必须中止。
[2] 确切性。算法的每个步骤都必须确切定义。
[3] 可行性。特定算法须可以在特定的时间内解决特定问题,
其实,算法虽然广泛应用在计算机领域,但却完全源自数学。实际上,最早的数学算法可追溯到公元前1600年-Babylonians有关求因式分解和平方根的算法。
那么又是哪10个计算机算法造就了我们今天的生活呢?请看下面的表单,排名不分先后:
1. 归并排序(MERGE SORT),快速排序(QUICK SORT)和堆积排序(HEAP SORT)
哪个排序算法效率最高?这要看情况。这也就是我把这3种算法放在一起讲的原因,可能你更常用其中一种,不过它们各有千秋。
归并排序算法,是目前为止最重要的算法之一,是分治法的一个典型应用,由数学家John von Neumann于1945年发明。
快速排序算法,结合了集合划分算法和分治算法,不是很稳定,但在处理随机列阵(AM-based arrays)时效率相当高。
堆积排序,采用优先伫列机制,减少排序时的搜索时间,同样不是很稳定。
与早期的排序算法相比(如冒泡算法),这些算法将排序算法提上了一个大台阶。也多亏了这些算法,才有今天的数据发掘,人工智能,链接分析,以及大部分网页计算工具。
2. 傅立叶变换和快速傅立叶变换
这两种算法简单,但却相当强大,整个数字世界都离不开它们,其功能是实现时间域函数与频率域函数之间的相互转化。能看到这篇文章,也是托这些算法的福。
因特网,WIFI,智能机,座机,电脑,路由器,卫星等几乎所有与计算机相关的设备都或多或少与它们有关。不会这两种算法,你根本不可能拿到电子,计算机或者通信工程学位。(USA)
3.代克思托演算法 (Dijkstra’s algorithm)
可以这样说,如果没有这种算法,因特网肯定没有现在的高效率。只要能以“图”模型表示的问题,都能用这个算法找到“图”中两个节点间的最短距离。
虽然如今有很多更好的方法来解决最短路径问题,但代克思托演算法的稳定性仍无法取代。
4. RSA非对称加密算法
毫不夸张地说,如果没有这个算法对密钥学和网络安全的贡献,如今因特网的地位可能就不会如此之高。现在的网络毫无安全感,但遇到钱相关的问题时我们必需要保证有足够的安全感,如果你觉得网络不安全,肯定不会傻乎乎地在网页上输入自己的银行卡信息。
RSA算法,密钥学领域最牛叉的算法之一,由RSA公司的三位创始人提出,奠定了当今的密钥研究领域。用这个算法解决的问题简单又复杂:保证安全的情况下,如何在独立平台和用户之间分享密钥。
5. 哈希安全算法(Secure Hash Algorithm)
确切地说,这不是一种算法,而是一组加密哈希函数,由美国国家标准技术研究所首先提出。无论是你的应用商店,电子邮件和杀毒软件,还是浏览器等等,都使用这种算法来保证你正常下载,以及是否被“中间人攻击”,或者“网络钓鱼”。
6. 整数质因子分解算法(Integer factorization)
这其实是一个数学算法,不过已经广泛应用与计算机领域。如果没有这个算法,加密信息也不会如此安全。通过一系列步骤将,它可以将一个合成数分解成不可再分的数因子。
很多加密协议都采用了这个算法,就比如刚提到的RSA算法。
7. 链接分析算法(Link Analysis)
在因特网时代,不同入口间关系的分析至关重要。从搜索引擎和社交网站,到市场分析工具,都在不遗余力地寻找因特网的正真构造。
链接分析算法一直是这个领域最让人费解的算法之一,实现方式不一,而且其本身的特性让每个实现方式的算法发生异化,不过基本原理却很相似。
链接分析算法的机制其实很简单:你可以用矩阵表示一幅“图“,形成本征值问题。本征值问题可以帮助你分析这个“图”的结构,以及每个节点的权重。这个算法于1976年由Gabriel Pinski和Francis Narin提出。
谁会用这个算法呢?Google的网页排名,Facebook向你发送信息流时(所以信息流不是算法,而是算法的结果),Google+和Facebook的好友推荐功能,LinkedIn的工作推荐,Youtube的视频推荐,等等。
普遍认为Google是首先使用这类算法的机构,不过其实早在1996年(Google问世2年前)李彦宏就创建的“RankDex”小型搜索引擎就使用了这个思路。而Hyper Search搜索算法建立者马西莫·马奇奥里也曾使用过类似的算法。这两个人都后来都成为了Google历史上的传奇人物。
8. 比例微积分算法(Proportional Integral Derivative Algorithm)
飞机,汽车,电视,手机,卫星,工厂和机器人等等事物中都有这个算法的身影。
简单来讲,这个算法主要是通过“控制回路反馈机制”,减小预设输出信号与真实输出信号间的误差。只要需要信号处理,或电子系统来控制自动化机械,液压和加热系统,都需要用到这个算个法。
没有它,就没有现代文明。
9. 数据压缩算法
数据压缩算法有很多种,哪种最好?这要取决于应用方向,压缩mp3,JPEG和MPEG-2文件都不一样。
哪里能见到它们?不仅仅是文件夹中的压缩文件。你正在看的这个网页就是使用数据压缩算法将信息下载到你的电脑上。除文字外,游戏,视频,音乐,数据储存,云计算等等都是。它让各种系统更轻松,效率更高。
10. 随机数生成算法
到如今,计算机还没有办法生成“正真的”随机数,但伪随机数生成算法就足够了。这些算法在许多领域都有应用,如网络连接,加密技术,安全哈希算法,网络游戏,人工智能,以及问题分析中的条件初始化。
这个表单并不完整,很多与我们密切相关的算法都没有提到,如机器学习和矩阵乘法。另外,知识有限,如有批漏,还望指正。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13