什么是算法?
简而言之,任何定义明确的计算步骤都可称为算法,接受一个或一组值为输入,输出一个或一组值。(来源:homas H. Cormen, Chales E. Leiserson 《算法导论第3版》)
可以这样理解,算法是用来解决特定问题的一系列步骤(不仅计算机需要算法,我们在日常生活中也在使用算法)。算法必须具备如下3个重要特性:
[1] 有穷性。执行有限步骤后,算法必须中止。
[2] 确切性。算法的每个步骤都必须确切定义。
[3] 可行性。特定算法须可以在特定的时间内解决特定问题,
其实,算法虽然广泛应用在计算机领域,但却完全源自数学。实际上,最早的数学算法可追溯到公元前1600年-Babylonians有关求因式分解和平方根的算法。
那么又是哪10个计算机算法造就了我们今天的生活呢?请看下面的表单,排名不分先后:
1. 归并排序(MERGE SORT),快速排序(QUICK SORT)和堆积排序(HEAP SORT)
哪个排序算法效率最高?这要看情况。这也就是我把这3种算法放在一起讲的原因,可能你更常用其中一种,不过它们各有千秋。
归并排序算法,是目前为止最重要的算法之一,是分治法的一个典型应用,由数学家John von Neumann于1945年发明。
快速排序算法,结合了集合划分算法和分治算法,不是很稳定,但在处理随机列阵(AM-based arrays)时效率相当高。
堆积排序,采用优先伫列机制,减少排序时的搜索时间,同样不是很稳定。
与早期的排序算法相比(如冒泡算法),这些算法将排序算法提上了一个大台阶。也多亏了这些算法,才有今天的数据发掘,人工智能,链接分析,以及大部分网页计算工具。
2. 傅立叶变换和快速傅立叶变换
这两种算法简单,但却相当强大,整个数字世界都离不开它们,其功能是实现时间域函数与频率域函数之间的相互转化。能看到这篇文章,也是托这些算法的福。
因特网,WIFI,智能机,座机,电脑,路由器,卫星等几乎所有与计算机相关的设备都或多或少与它们有关。不会这两种算法,你根本不可能拿到电子,计算机或者通信工程学位。(USA)
3.代克思托演算法 (Dijkstra’s algorithm)
可以这样说,如果没有这种算法,因特网肯定没有现在的高效率。只要能以“图”模型表示的问题,都能用这个算法找到“图”中两个节点间的最短距离。
虽然如今有很多更好的方法来解决最短路径问题,但代克思托演算法的稳定性仍无法取代。
4. RSA非对称加密算法
毫不夸张地说,如果没有这个算法对密钥学和网络安全的贡献,如今因特网的地位可能就不会如此之高。现在的网络毫无安全感,但遇到钱相关的问题时我们必需要保证有足够的安全感,如果你觉得网络不安全,肯定不会傻乎乎地在网页上输入自己的银行卡信息。
RSA算法,密钥学领域最牛叉的算法之一,由RSA公司的三位创始人提出,奠定了当今的密钥研究领域。用这个算法解决的问题简单又复杂:保证安全的情况下,如何在独立平台和用户之间分享密钥。
5. 哈希安全算法(Secure Hash Algorithm)
确切地说,这不是一种算法,而是一组加密哈希函数,由美国国家标准技术研究所首先提出。无论是你的应用商店,电子邮件和杀毒软件,还是浏览器等等,都使用这种算法来保证你正常下载,以及是否被“中间人攻击”,或者“网络钓鱼”。
6. 整数质因子分解算法(Integer factorization)
这其实是一个数学算法,不过已经广泛应用与计算机领域。如果没有这个算法,加密信息也不会如此安全。通过一系列步骤将,它可以将一个合成数分解成不可再分的数因子。
很多加密协议都采用了这个算法,就比如刚提到的RSA算法。
7. 链接分析算法(Link Analysis)
在因特网时代,不同入口间关系的分析至关重要。从搜索引擎和社交网站,到市场分析工具,都在不遗余力地寻找因特网的正真构造。
链接分析算法一直是这个领域最让人费解的算法之一,实现方式不一,而且其本身的特性让每个实现方式的算法发生异化,不过基本原理却很相似。
链接分析算法的机制其实很简单:你可以用矩阵表示一幅“图“,形成本征值问题。本征值问题可以帮助你分析这个“图”的结构,以及每个节点的权重。这个算法于1976年由Gabriel Pinski和Francis Narin提出。
谁会用这个算法呢?Google的网页排名,Facebook向你发送信息流时(所以信息流不是算法,而是算法的结果),Google+和Facebook的好友推荐功能,LinkedIn的工作推荐,Youtube的视频推荐,等等。
普遍认为Google是首先使用这类算法的机构,不过其实早在1996年(Google问世2年前)李彦宏就创建的“RankDex”小型搜索引擎就使用了这个思路。而Hyper Search搜索算法建立者马西莫·马奇奥里也曾使用过类似的算法。这两个人都后来都成为了Google历史上的传奇人物。
8. 比例微积分算法(Proportional Integral Derivative Algorithm)
飞机,汽车,电视,手机,卫星,工厂和机器人等等事物中都有这个算法的身影。
简单来讲,这个算法主要是通过“控制回路反馈机制”,减小预设输出信号与真实输出信号间的误差。只要需要信号处理,或电子系统来控制自动化机械,液压和加热系统,都需要用到这个算个法。
没有它,就没有现代文明。
9. 数据压缩算法
数据压缩算法有很多种,哪种最好?这要取决于应用方向,压缩mp3,JPEG和MPEG-2文件都不一样。
哪里能见到它们?不仅仅是文件夹中的压缩文件。你正在看的这个网页就是使用数据压缩算法将信息下载到你的电脑上。除文字外,游戏,视频,音乐,数据储存,云计算等等都是。它让各种系统更轻松,效率更高。
10. 随机数生成算法
到如今,计算机还没有办法生成“正真的”随机数,但伪随机数生成算法就足够了。这些算法在许多领域都有应用,如网络连接,加密技术,安全哈希算法,网络游戏,人工智能,以及问题分析中的条件初始化。
这个表单并不完整,很多与我们密切相关的算法都没有提到,如机器学习和矩阵乘法。另外,知识有限,如有批漏,还望指正。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31